首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure cultures of ammonia-oxidizing bacteria, Nitrosomonas europaea, were exposed to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), chloroform (CF), 1,2-dichloroethane (1,2-DCA), or carbon tetrachloride (CT), in the presence of ammonia, in a quasi-steady-state bioreactor. Estimates of enzyme kinetics constants, solvent inactivation constants, and culture recovery constants were obtained by simultaneously fitting three model curves to experimental data using nonlinear optimization techniques and an enzyme kinetics model, referred to as the inhibition, inactivation, and recovery (IIR) model, that accounts for inhibition of ammonia oxidation by the solvent, enzyme inactivation by solvent product toxicity, and respondent synthesis of new enzyme (recovery). Results showed relative enzyme affinities for ammonia monooxygenase (AMO) of 1,1-DCE approximately TCE > CT > NH(3) > CF > 1,2-DCA. Relative maximum specific substrate transformation rates were NH(3) > 1,2-DCA > CF > TCE approximately 1,1-DCE > CT (=0). The TCE, CF, and 1,1-DCE inactivated the cells, with 1,1-DCE being about three times more potent than TCE or CF. Under the conditions of these experiments, inactivating injuries caused by TCE and 1,1-DCE appeared limited primarily to the AMO enzyme, but injuries caused by CF appeared to be more generalized. The CT was not oxidized by N. europaea while 1,2-DCA was oxidized quite readily and showed no inactivation effects. Recovery capabilities were demonstrated with all solvents except CF. A method for estimating protein yield, the relationship between the transformation capacity model and the IIR model, and a condition necessary for sustainable cometabolic treatment of inactivating substrates are presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 520-534, 1997.  相似文献   

2.
Cometabolic biodegradation prcesses are important for bioremediation of hazardous waste sites. However, these proceeses are not well understood and have not been modeled thoroughly. Traditional Michaelis-Menten kinetics models often are used, but toxic effects and bacterial responses to toxicity may cause changes in enzyme levels, rendering such models inappropriate. In this article, a conceptual and mathematical model of cometabolic enzyme kinetics i described. Model derivation is based on enzyme/growth-substrate/nongrowth-substrate interaction and incorporates enzyme inhibition (caused by the presence of a cometabolic compound), inactivation (resulting from toxicity of a cometabolic product), and recovery (associated with bacterial synthesis of new enbzyme in response to inactivation). The mathematical model consists of a system of two, nonlinear ordinary differential equations that can be solved implicitly using numerical methods, providing estimates of model parameters. Model analysis shows that growth substraate adn nongrowth substrate oxidation rates are related by a dimensionless constant. Reliability of tehy model solution prcedure is verifiedl by abnalyzing data ses, containing random error, from simulated experimentss with trichhloroethyylene (TCE) degradation by ammonia-oxidizing bacterialunder various conditions. Estimation of the recovery rate contant is deterimined to be sensitive to intial TCE concentration. Model assumptions are evaluated in a companion article using data from TCE degradation experiments with amoniaoxidizing bacteria. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Due to its toxicity and persistence in the environment, trichloroethylene (TCE) has become a major soil and groundwater contaminant in many countries. A group of aliphatic- and aromatic-degrading bacteria expressing nonspecific oxygenases have been reported to transform TCE through aerobic cometabolism in the presence of primary substrate such as methane, ammonia, propane, phenol, toluene or cumene. This paper reviews the fundamentals and results of TCE cometabolism from laboratory and field studies. The limitations associated with TCE cometabolism including the causes and effects of substrate and/or inducer utilization rate and depletion, enzyme inhibition and inactivation, and cytotoxicity during TCE oxidation among various TCE-degrading bacteria and enzymes are discussed. In addition, the potential strategies e.g. addition of primary substrate/inducer or external energy substrate, use of a two-stage reactor and application of cell immobilization for sustained TCE degradation are highlighted. The review summarizes important information on TCE cometabolism, which is necessary for developing efficient TCE bioremediation approaches.  相似文献   

4.
The kinetics of the cometabolism of trichloroethylene (TCE) by the ammonia-oxidizing soil bacterium Nitrosomonas europaea in short-term (<10-min) incubations were investigated. Three individual effects of TCE cometabolism on this bacterium were characterized. First, we observed that TCE is a potent competitive inhibitor of ammonia oxidation by N. europaea. The K(infi) value for TCE (30 (mu)M) is similar to the K(infm) for ammonia (40 (mu)M). Second, we examined the toxicity associated with TCE cometabolism by N. europaea. Stationary-phase cells of N. europaea oxidized approximately 60 nmol of TCE per mg of protein before ammonia-oxidizing activity was completely inactivated by reactive intermediates generated during TCE oxidation. At the TCE concentrations used in these experiments, ammonia did not provide significant protection against inactivation. Third, we have determined the ability of cells to recover ammonia-oxidizing activity after exposure to TCE. Cells recovering from TCE inactivation were compared with cells recovering from the specific inactivation of ammonia-oxidizing activity by light. The recovery kinetics were indistinguishable when 40% or less of the activity was inactivated. However, at increased levels of inactivation, TCE-inactivated cells did not recover as rapidly as light-inactivated cells. The kinetics of recovery appear to be dependent on both the extent of inactivation of ammonia-oxidizing activity and the degree of specificity of the inactivating treatment.  相似文献   

5.
In this study, the inhibitory effect of TCE on nitrification process was investigated with an enriched nitrifier culture. TCE was found to be a competitive inhibitor of ammonia oxidation and the inhibition constant (K I ) was determined as 666–802 μg/l. The TCE affinity for the AMO enzyme was significantly higher than ammonium. The effect of TCE on ammonium utilization was evaluated with linearized plots of Monod equation (e.g., Lineweaver–Burk, Hanes–Woolf and Eadie–Hofstee plots) and non-linear least square regression (NLSR). No significant differences were found among these data evaluation methods in terms of kinetic parameters obtained.  相似文献   

6.
In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes.  相似文献   

7.
The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l−1 TCE effectively at 1.9 mg l−1 of aqueous CH4. In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l−1 TCE at 20 mg l−1 of NH4 +-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.  相似文献   

8.
Lysyl oxidase purified from bovine aorta can oxidize simple alkyl mono- and diamine substrates yielding the respective aldehyde, H2O2, and ammonia as products. The oxidation of such substrates is limited to approximately 100 catalytic turnovers per enzyme molecule since lysyl oxidase is syncatalytically and irreversibly inactivated in the course of oxidation of these amines. The present study reveals that addition of oxidant scavengers protects significantly against inactivation of lysyl oxidase and that the ammonia product is a reversible competitive inhibitor of amine oxidation. Further, the enzyme becomes covalently labeled by the amine substrate or its enzyme-processed derivative during catalysis. Thus, lysyl oxidase appears subject to multiple modes of catalysis-dependent inhibition or inactivation. Syncatalytic inactivation of lysyl oxidase might represent a means of restricting the activity of this enzyme toward its elastin and collagen substrates in vivo.  相似文献   

9.
The soil nitrifying bacterium Nitrosomonas europaea is capable of degrading trichloroethylene (TCE) and other halogenated hydrocarbons. TCE cometabolism by N. europaea resulted in an irreversible loss of TCE biodegradative capacity, ammonia-oxidizing activity, and ammonia-dependent O(2) uptake by the cells. Inactivation was not observed in the presence of allylthiourea, a specific inhibitor of the enzyme ammonia monooxygenase, or under anaerobic conditions, indicating that the TCE-mediated inactivation required ammonia monooxygenase activity. When N. europaea cells were incubated with [C]TCE under conditions which allowed turnover of ammonia monooxygenase, a number of cellular proteins were covalently labeled with C. Treatment of cells with allylthiourea or acetylene prior to incubation with [C]TCE prevented incorporation of C into proteins. The ammonia-oxidizing activity of cells inactivated in the presence of TCE could be recovered through a process requiring de novo protein synthesis. In addition to TCE, a series of chlorinated methanes, ethanes, and other ethylenes were screened as substrates for ammonia monooxygenase and for their ability to inactivate the ammonia-oxidizing system of N. europaea. The chlorocarbons could be divided into three classes depending on their biodegradability and inactivating potential: (i) compounds which were not biodegradable by N. europaea and which had no toxic effect on the cells; (ii) compounds which were cooxidized by N. europaea and had little or no toxic effect on the cells; and (iii) compounds which were cooxidized and produced a turnover-dependent inactivation of ammonia oxidation by N. europaea.  相似文献   

10.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

11.
The effects of limiting concentrations of ammonium on the metabolic activity of Nitrosomonas europaea, an obligate ammonia-oxidizing soil bacterium, were investigated. Cells were harvested during late logarithmic growth and were incubated for 24 h in growth medium containing 0, 15, or 50 mM ammonium. The changes in nitrite production and the rates of ammonia- and hydroxylamine-dependent oxygen consumption were monitored. In incubations without ammonium, there was little change in the ammonia oxidation activity after 24 h. With 15 mM ammonium, an amount that was completely consumed, there was an 85% loss of the ammonia oxidation activity after 24 h. In contrast, there was only a 35% loss of the ammonia oxidation activity after 24 h in the presence of 50 mM ammonium, an amount that was not consumed to completion. There was little effect on the hydroxylamine oxidation activity in any of the incubations. The loss of ammonia oxidation activity was not due to differences in steady-state levels of ammonia monooxygenase (AMO) mRNA (amoA) or to degradation of the active site-containing subunit of AMO protein. The incubations were also conducted at a range of pH values to determine whether the loss of ammonia oxidation activity was correlated to the residual ammonium concentration. The loss of ammonia oxidation activity after 24 h was less at lower pH values (where the unoxidized ammonium concentration was higher). When added in conjunction with limiting ammonium, short-chain alkanes, which are alternative substrates for AMO, prevented the loss of ammonia oxidation activity at levels corresponding to their binding affinity for AMO. These results suggest that substrates of AMO can preserve the ammonia-oxidizing activity of N. europaea in batch incubations by protecting either AMO itself or other molecules associated with ammonia oxidation.  相似文献   

12.
The effect of copper on the in vivo and in vitro activity of ammonia monooxygenase (AMO) from the nitrifying bacterium Nitrosomonas europaea was investigated. The addition of CuCl2 to cell extracts resulted in 5- to 15-fold stimulation of ammonia-dependent O2 consumption, ammonia-dependent nitrite production, and hydrazine-dependent ethane oxidation. AMO activity was further stimulated in vitro by the presence of stabilizing agents, including serum albumins, spermine, or MgCl2. In contrast, the addition of CuCl2 and stabilizing agents to whole-cell suspensions did not result in any stimulation of AMO activity. The use of the AMO-specific suicide substrate acetylene revealed two populations of AMO in cell extracts. The low, copper-independent (residual) AMO activity was completely inactivated by acetylene in the absence of exogenously added copper. In contrast, the copper-dependent (activable) AMO activity was protected against acetylene inactivation in the absence of copper. However, in the presence of copper both populations of AMO were inactivated by acetylene. [14C]acetylene labelling of the 27-kDa polypeptide of AMO revealed the same extent of label incorporation in both whole cells and optimally copper-stimulated cell extracts. In the absence of copper, the label incorporation in cell extracts was proportional to the level of residual AMO activity. Other metal ions tested, including Zn2+, Co2+, Ni2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Cr3+, and Ag+, were ineffective at stimulating AMO activity or facilitating the incorporation of 14C label from [14C]acetylene into the 27-kDa polypeptide. On the basis of these results, we propose that loss of AMO activity upon lysis of N. europaea results from the loss of copper from AMO, generating a catalytically inactive, yet stable and activable, form of the enzyme.  相似文献   

13.
Experimental bioreactors operated as recirculated closed systems were inoculated with bacterial cultures that utilized methane, propane, and tryptone-yeast extract as aerobic carbon and energy sources and degraded trichloroethylene (TCE). Up to 95% removal of TCE was observed after 5 days of incubation. Uninoculated bioreactors inhibited with 0.5% Formalin and 0.2% sodium azide retained greater than 95% of their TCE after 20 days. Each bioreactor consisted of an expanded-bed column through which the liquid phase was recirculated and a gas recharge column which allowed direct headspace sampling. Pulses of TCE (20 mg/liter) were added to bioreactors, and gas chromatography was used to monitor TCE, propane, methane, and carbon dioxide. Pulsed feeding of methane and propane with air resulted in 1 mol of TCE degraded per 55 mol of substrate utilized. Perturbation studies revealed that pH shifts from 7.2 to 7.5 decreased TCE degradation by 85%. The bioreactors recovered to baseline activities within 1 day after the pH returned to neutrality.  相似文献   

14.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

15.
Allylsulfide caused an irreversible inactivation of ammonia monooxygenase (AMO) activity (ammonia-dependent O2 uptake) in Nitrosomonas europaea. The hydroxylamine oxidoreductase activity (hydrazine-dependent O2 uptake) of cells was unaffected by allylsulfide. Anaerobic conditions or the presence of allylthiourea, a reversible noncompetitive AMO inhibitor, protected AMO from inactivation by allylsulfide. Ammonia did not protect AMO from inactivation by allylsulfide but instead increased the rate of inactivation. The inactivation of AMO followed pseudo-first-order kinetics, but the observed rates did not saturate with increasing allylsulfide concentrations. The time course of recovery of AMO-dependent nitrite production after complete inactivation by allylsulfide required de novo protein synthesis. Incubation of cells with allylsulfide prevented the 14C label from 14C2H2 (a suicide mechanism-based inactivator of AMO) from being incorporated into the 27-kDa polypeptide of AMO. Some compounds structurally related to allylsulfide were unable to inactivate AMO. We conclude that allylsulfide is a specific, mechanism-based inactivator of AMO in N. europaea.  相似文献   

16.
As measured by the toluene-induced bioluminescent response of Pseudomonas putida TVA8 in batch experiments, toluene dioxygenase (Tod) enzyme activities are dependent on toluene concentration between 0 and 30 mg/L. To provide a measure of the Tod activity for use in Michaelis-Menten competitive-inhibition kinetics, a correlation between toluene concentration and induced Tod activity as measured by an induced bioluminescent response of P. putida TVA8 is presented as a nondimensional Tod activity parameter. A packed-bed, radial-flow bioreactor (RFB) using the bioreporter P. putida TVA8A serves as the model system for studying the effect of the enzyme activity parameter on model predictions of vapor-phase toluene oxidation and trichloroethylene (TCE) cometabolism. Mass balances were performed on a differential section of the RFB to describe the radial transport of vapor-phase toluene and TCE through a bulk gas phase and the concomitant biological reaction in a stationary biofilm phase. The finite-element Galerkin weak-statement formulation with first-order basis functions was used to find the optimum solution to the highly nonlinear, coupled equations. For this RFB system with toluene concentrations less than 1 mg/L in the bulk gas phase, the Tod activity parameter enables accurate predictions of steady-state TCE degradation rate (0.27 microg TCE/min).  相似文献   

17.
The kinetics of biodegradation of TCE in the biofilter packed with wood charcoal and inoculated with diazotrophic bacterial community had been investigated. Use of Michaelis-Menten type model showed that substrate inhibition was present in the system. The kinetic model proposed by Edwards (1970) was used to calculate kinetic parameters-maximum elimination capacity (EC(max)), substrate constant (K(s)), and inhibition constant (K(I)). The model fitted well with the experimental data and the EC(max) was found to be in the range of 10.8-6.1 g/m(3) h. The K(s) values depended upon substrate concentration and ranged from 0.024 to 0.043 g/m(3) indicating the high affinity of diazotrophs for TCE. The K(I) values were low and nearly constant (0.011-0.015 g/m(3)) indicating a moderate substrate inhibition.  相似文献   

18.
Various bacterial isolates from enrichments with isopropylbenzene (cumene), toluene or phenol as carbon and energy sources were tested as to their potential to oxidize trichloroethene (TCE). In contrast to toluene and phenol, all isolates enriched on isopropylbenzene were able to oxidize TCE. Two isolates, strain JR1 and strain BD1, were identified as Pseudomonas spec. and as Rhodococcus erythropolis, respectively. TCE oxidation was accompanied by the liberation of stoichiometric amounts of chloride. Initial TCE oxidation rate increased proportional to the substrate concentration from 25 to 200 M TCE. Maximal initial TCE-degradation rates found here were 4 to 5 nmol · min-1 · mg protein-1. The TCE degradation rate decreased with time. The two isolates showed a temperature optimum for TCE degradation between 10 and 20 °C. In addition to TCE, R. erythropolis BD1 degraded only cis- and trans-dichloroethene whereas Pseudomonas spec. JR1 was able to oxidize also 1,1-dichloroethene, vinyl chloride, trichloroethane, and 1,2-dichloroethane.Abbrevations DMF dimethylformamide - TCE trichloroethene  相似文献   

19.
Nitrosomonas europaea, an obligate ammonia-oxidizing bacterium, lost an increasing amount of ammonia oxidation activity upon exposure to increasing concentrations of nitrite, the primary product of ammonia-oxidizing metabolism. The loss of activity was specific to the ammonia monooxygenase (AMO) enzyme, as confirmed by a decreased rate of NH4+-dependent O2 consumption, some loss of active AMO molecules observed by polypeptide labeling with 14C2H2, the protection of activity by substrates of AMO, and the requirement for copper. The loss of AMO activity via nitrite occurred under both aerobic and anaerobic conditions, and more activity was lost under alkaline than under acidic conditions except in the presence of large concentrations (20 mM) of nitrite. These results indicate that nitrite toxicity in N. europaea is mediated by a unique mechanism that is specific for AMO.  相似文献   

20.
甲烷利用细菌降解三氯乙烯的研究   总被引:5,自引:0,他引:5  
GYJ3菌株细胞微细结构的电镜观察结果表明:它具有Ⅱ型甲烷利用细菌的特征,应归属于Ⅱ型菌。考察了Cu2+浓度、培养气相中甲烷浓度对菌株细胞中甲烷单加氧酶(EC1.14.13.25,简称MMO)活性的影响。结果表明,培养液中Cu2+浓度为1.5μmol/L,培养气相中甲烷:空气比为2∶1时,可溶性甲烷单加氧酶占细胞中MMO总量的95%。研究了GYJ3菌株细胞悬浮液降解三氯乙烯过程。实验结果表明,GYJ3菌株能够降解不同浓度的三氯乙烯,较高浓度的三氯乙烯对降解反应没有明最的抑制作用。加入甲酸盐作为电子给体能够提高三氯乙烯降解反应速率。实验中观察到GYJ3菌株降解三氯乙烯过程中反应速率随着反应的进行而下降,在三氯乙烯降解过程中三氯乙烯氧化产物是导致细胞失活的主要原因。实验室中测定了GYJ3菌株单位重量细胞降解三氯乙烯极限量,它可作为评价细菌降解三氯乙烯能力的重要指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号