首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Allozyme variability was examined in populations of three endemic species of the species complex Lophuromys flavopunctatus sensu lato: L. chrysopus, L. brevicaudus, and L. melanonyx. These species substitute each other in adjacent latitudinal belts of the Bale Massif in Ethiopia. A deficit of heterozygotes at several loci was found in most samples of all species studied. Moreover, the samples included animals homozygous for two or three minor alleles and heterozygous for alleles that are rare and unique for the given species. It is suggested that the Bale Massif are inhabited by numerous genetically isolated populations of each Lophuromys species, which exchange genes at an extremely low rate. Genotypic disequilibrium observed in most samples is explained by the fact that most sampling localities comprise ranges of two and more micropopulations. In our view, microgeographic subdivision of the populations is caused by recurrent fragmentation of habitats during the Pleistocene glaciation of the Bale Massif and subsequent prolonged isolation of local populations. Gene drift accompanying these processes resulted in high genetic differentiation of the local populations, which probably persisted until the present. Geographical isolation of the Bale Massif, its uniquely diverse ecological conditions, and extraordinary allozyme structure of the Lophuromys populations suggest that these populations represent remnants or direct descendants of relic local populations.  相似文献   

2.
Bale monkeys (Chlorocebus djamdjamensis) are little-known primates endemic to the forests of the Bale Massif and Hagere Selam regions of Ethiopia. From August 2007 to May 2008, we conducted the first ever study of the species’ behavior and ecology, focusing in particular on its diet, activity patterns, and ranging ecology in the Odobullu Forest. We studied 2 neighboring groups (group A: 55–60 members; group B: 46–50 members) and conducted behavioral scan samples on the first 2–5 individuals sighted at 15-min intervals. Feeding accounted for 65.7% of the activity budget, followed by moving (14.4%), resting (10.7%), social (7.1%), and other behaviors (2.4%). Overall diet during the study was dominated by young leaves (80.2%), though subjects also ate fruits (9.6%), flowers (3.1%), animal prey (2.3%), shoots (1.5%), stems (1.4%), mature leaves (1.1%), and roots (0.9%). Bale monkeys consumed only 11 plant species; of these, the top 5 species accounted for 94.3% of their diet. The top food item, bamboo (Arundinaria alpina), was responsible for a remarkable 76.7% of their diet, with most (95.2%) of the bamboo consumption consisting of young leaves. Mean daily path length for the study groups was 928 m and mean (100% minimum convex polygon) home range size was 15.2 ha. Though we are cautious in drawing conclusions from only 2 groups, the larger group traveled further per day and occupied a larger home range, patterns suggesting scramble competition may be occurring in Bale monkey groups at Odobullu. The dietary specialization of Bale monkeys on bamboo makes them unique among Chlorocebus spp. and suggests an intriguing ecological convergence with the golden monkeys (Cercopithecus mitis kandti) of Uganda and bamboo lemurs (Hapalemur spp.) of Madagascar. Their narrow ecological niche, limited geographic distribution, and bamboo harvesting by local people for commercial purposes place Bale monkeys at risk of extinction. To ensure the long-term survival of Bale monkeys, appropriate management action should be taken to conserve the species and the bamboo forests upon which it depends.  相似文献   

3.
Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain–island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice‐free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain–island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long‐term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65–1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.  相似文献   

4.
The polytypic carabid Carabus punctatoauratus, which inhabits the northern chains of the middle and eastern Pyrenees, was investigated with respect to allozyme polymorphisms. Twenty-nine local populations distributed over nearly the entire range of the species were studied. Out of 18 enzymes tested, four were found to be polymorphic: aspartate aminotransferase-1 (AAT-1), an esterase (EST-X), gulcose-6-phosphate isomerase (GPI) and 6-phosphogluconate dehydrogenase (6-PGD). The total number of allozymes detected was 7 for AAT-1, 14 for EST-X, 13 for GPE and 7 for 6-PGD; in local populatins, the sum of the number of allozymes varied from 7 to 24. With a few exceptions, the genotype frequencies of the local populations were in Hardy-Weinberg equilibrum. In two loci (Est-x and Gpi) an allele frequency gradient along the WNW-ESE axis of the range was detected. Moreover, several alleles with a discontinuous spatial change of frequency were found. The peripheral populations studied (from the Massif du Ganigou in the east and from the Massif du Midi de Bigorre in the west) were substantially differentiated. On the other hand, populations distributed over the large central region of the species exhibited similar sets of allozymes. Thus, in the central region, a congruence int he degree of morphological and biochemical differentiation has not been found. However, in several cases, local populations obviously belonging to the same metapopulation showed significant differentiations, which seem to be caused by genetic drift. It is concluded that, in Carabus punctatoauratus, allozyme differentiations among local populations are usually trasient phenomena, whichare levelled agina by metapopulation dynamics (‘drift levelling’).  相似文献   

5.
Habitat fragmentation is an increasing threat to wildlife species across the globe and it has been predicted that future biodiversity will decrease rapidly without the intervention of scientifically-based management. In this study we have applied a landscape genetics approach to suggest a network design that will maintain connectivity among populations of the endangered mountain Nyala (Tragelaphus buxtoni) in the fragmented highlands of Ethiopia. DNA was obtained non-invasively from 328 individuals and genetic population structure and gene flow were estimated using 12 microsatellite markers. In addition, a 475-bp segment of the mitochondrial control region was sequenced for 132 individuals. Potential dispersal corridors were determined from least-cost path analysis based on a habitat suitability map. The genetic data indicated limited gene flow between the sampled mountain Nyala populations of the Bale Massif and the Arsi Massif. The genetic differentiation observed among five sampling areas of the Bale Massif followed a pattern of isolation by distance. We detected no impact of habitat resistance on the gene flow. In the future, however, the current expanding human population in the highlands of Ethiopia may reduce the current mountain Nyala habitat and further limit migration. Hence, maintaining habitat connectivity and facilitating survival of stepping-stone populations will be important for the future conservation of the species. The approach used here may also be useful for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment.  相似文献   

6.
Temporal changes in allele frequencies are often assumed in studies addressing the history of populations affected by different anthropogenic and natural impacts at different time scales. Yet, few studies directly compare the genetic composition of populations over time spans of more than 10 years. Therefore, to test the genetic effects of 15 years of population isolation in the butterfly Lycaena helle, we analysed 472 individuals from 27 samples, of which nine were collected in 1991 and 18 in 2006. Sampling was performed in five mountain regions (Pyrenees, Massif Central, Jura, Vosges and Ardennes). Genetic analyses were performed using five polymorphic microsatellites. Old and new samples of identical or neighbouring populations revealed similar genetic differentiations among these five mountain regions. A comparatively strong genetic differentiation among populations combined with a high amount of private alleles for each mountain area was detected, but mountain‐specific alleles were in most cases identical in 1991 and 2006. Nevertheless, the obtained data also indicate moderate changes between 1991 and 2006 in the species’ genetic structure – genetic differentiation among local populations increased marginally and allele frequencies showed corresponding modifications. A significant decline in genetic diversity was not detectable, and nine private alleles exclusive to a single mountain region were only detected in samples from the year 1991, whereas eleven were only observed in the individuals collected in 2006. These observations might indicate the results of genetic drift within isolated populations.  相似文献   

7.
Different species of the bristletail genus Lepismachilis were collected in 14 localities in Italy and Spain and an allozyme electrophoretic survey was carried out to estimate the degree of genetic variability and differentiation at intra- and interspecific levels. Four morphological species were initially identified (L osellai, L. y-signata, L. affinis, L. targionii), but the electrophoretic analysis demonstrated the presence of two additional species among the individuals of L. targionii (Lepismachilis spl and sp2). The validity of these species and their differentiation from L targionii were demonstrated by the fixation of alternative allelic patterns at several loci (7 in Lepismachilis spl and 8 in Lepismachilis sp2), coupled with fixed, previously undetected, morphological differences. In addition, Lepismachilis sp2 was sympatric with L. targionii in three collecting sites, where the fixation of alternative allelic patterns unequivocally demonstrated reproductive isolation. Genetic variability did not seem to be correlated with local ecological factors, and differences between species should rather be explained by different historical factors. Low levels of gene flow, estimated with two different indirect methods, were observed in L. targionii and L. y-signata, and were due to high levels of structuring among populations. Genetic differentiation among conspecific populations was not correlated to their geographical arrangement and the presence of loci fixed for different alleles among them suggested that stochastic factors (such as genetic drift) may have played a role in determining genetic differentiation of geographically isolated populations. Genetic divergence values indicated that the six species are well differentiated and allozyme profiles were diagnostic for all of them. On the other hand, allozyme data did not provide adequate information to resolve evolutionary relationships among the species, nor did they confirm the validity of the two subgenera (Lepismachilis and Berlesilis) in which the genus Lepismachilis is traditionally divided.  相似文献   

8.
Enzyme electrophoresis was used to examine variation at 18 gene loci in Lasthenia burkei, L. conjugens, and L. femontii. The species consist of diploid annuals restricted to vernal pools in California; a variety of data has indicated that they are closely related. Populations of the three species are similar at isozyme loci; L. conjugens and L. fremontii are most similar with a genetic identity of 0.965. Lasthenia conjugens and L. burkei are next most similar (0.934), while L. burkei and L. fremontii have an identity of 0.909. Lasthenia burkei and L. femontii each contain a different subset of the alleles found in L. conjugens. Electrophoretic data are concordant with the view that these three species are closely related, but do not support the hypothesis that L. burkei is a stabilized hybrid derivative of L. conjugens and L. fremontii because alleles unique to each of the latter two species are not combined in the former. Rather, distribution of alleles among the three species suggests two possible alternative hypotheses of evolutionary relationships. One hypothesis considers Lasthenia conjugens a hybrid derivative of L. burkei and L. fremontii while the alternative explanation views the latter two species as independent derivatives of the former. Neither of these hypotheses appears to be concordant with morphological data.  相似文献   

9.
Understanding of the biology of rarity is central to the conservation of some endangered species. Rare taxa are often reported to be specialized, but they are usually poorly studied. The Ethiopian wolf (Canis simensis) is endemic to the Ethiopian highlands and in two major populations, Bale and Arsi in the southern range of the species, it preys almost exclusively upon diurnal rodents all year round, mainly molerats Tachyoryctes macrocephalus and common molerats T. splendens, respectively. Where these large rodents are absent or rare, wolves are expected to rely more heavily on nocturnal rats or livestock. Prey remains in 161 scats from five newly studied populations confirmed that wolves are indeed specialist rodent hunters elsewhere, and that their narrow diets are dominated by diurnal Murinae rats (60–83% of prey occurrences). Swamp rats Otomys typus were the main prey, followed by grass rats Arvicanthis abyssinicus. Common molerats, Lophuromys rats and nocturnal Stenocephalemys spp. constituted the variable portion of the diets, and their proportional contributions varied across populations in relation to elevation and latitude. Towards the north, where the climate is drier and human populations more dense, wolves predate more frequently on rat‐sized prey, including nocturnal species, with implications for the survival of small populations in the Northern Highlands.  相似文献   

10.
For the first time, the neutral genetic relatedness of natural populations of Trichostrongylid nematodes was investigated in relation to polymorphism of the β‐tubulin gene, which is selected for anthelminthic treatments. The aim of the study was to assess the contribution of several evolutionary processes: migration and genetic drift by neutral genetic markers and selection by anthelminthic treatments on the presence of resistance alleles at β‐tubulin. We studied two nematode species (Teladorsagia circumcincta and Haemonchus contortus) common in temperate climatic zones; these species are characterized by contrasting life history traits. We studied 10 isolated populations of goat nematode parasites: no infected adult goat had been exchanged after the herds were established. Beta‐tubulin polymorphism was similar in these two species. One and two β‐tubulin alleles from T. circumcincta and H. contortus respectively were shared by several populations. Most of the β‐tubulin alleles were ‘private’ alleles. No recombination between alleles was detected in BZ‐resistant alleles from T. circumcincta and H. contortus. The T. circumcincta populations have not diverged much since their isolation (FST <0.08), whereas H. contortus displayed marked local genetic differentiation (FST ranging from 0.08 to 0.18). These findings suggest that there are severe bottlenecks in the H. contortus populations, possibly because of their reduced abundance during unfavourable periods and their high reproductive rate, which allows the species to persist even after severe population reduction. Overall, the data reported contradict the hypothesis of the origin of β‐tubulin resistance alleles in these populations from a single mutational event, but two other hypotheses (recurrent mutation generating new alleles in isolated populations and the introduction of existing alleles) emerge as equally likely.  相似文献   

11.
Since the Cenozoic Era, the southern Iberian Peninsula has undergone a series of complex geological and climatic changes that have shaped the hydrographic configuration of the freshwater network, influencing the present‐day distribution of primary freshwater species and favoring a high level of local endemicity. The cyprinid species Luciobarbus sclateri (Günther, 1968) is an endemic species confined to the southern Iberian Peninsula and characterized by a complex evolutionary history. Previous studies linked the structure of L. sclateri populations to the effects of climate change during glaciations and were not able to explain the genetic discordance found between nuclear and mitochondrial markers. The results of this study show that the structure of L. sclateri populations is a reflection of diversification processes linked to the geological history of the region. Thus, we found three main mitochondrial phylogroups: the first one corresponding to small basins in southern Iberian Peninsula, a second one in eastern Iberian Peninsula, corresponding to Segura population, and a third one including the rest of the basins where the species is distributed. The southern group began diverging in the Pliocene as result of tectonic dynamics characterized by the emersion of the basins around the Strait of Gibraltar. The other two groups began diverging with the formation of the current Iberian hydrographic system during Pleistocene. So, the isolation of the hydrographic basins was the main factor driving intraspecific differentiation, followed by recent secondary contacts, admixture, and re‐isolation of the populations.  相似文献   

12.
The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so‐called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.  相似文献   

13.
Afework  Bekele  Marco  Corti 《Journal of Zoology》1994,232(4):675-689
We investigated the geographic variation of eight Ethiopian populations of the rodent Lophuromys flavopunctatus and compared them to the Bale endemic species L. melanonyx. We used multivariate morphometrics and analysed independently skull and external body linear measurements, in an attempt to relate morphological variability to geography (latitude, longitude, altitude). There is a high morphological diversity in these Ethiopian populations, which form three distinct recognizable groups, with the Bale population being the most distinct. The results of analyses on the two character sets corroborate each other and indicate that the kind of variation is not 'ecological' but rather there is a phylogenetic cause, and relations at higher taxonomic level are suggested. There is a homogeneous group with five populations within which there is a recognizable pattern of clinal variation related to altitude, with a decrease in body size and a change in skull shape.  相似文献   

14.
1. Only a few studies have compared patterns of genetic variation among populations of different Daphnia species on a regional scale. The present study addresses this gap and examines the relationship between diversity as revealed by allozyme variation and habitat size for populations of Daphnia pulex, D. obtusa and D. curvirostris in Flanders (Belgium). In addition, we examined whether patterns of isolation‐by‐distance could be observed in each of these three Daphnia species. 2. The relationship between genetic diversity and habitat size varied among Daphnia species that occur in the same region. In D. pulex and D. obtusa populations, a positive relationship between local genetic diversity and habitat size was found, whereas the relationship was negative in D. curvirostris populations. 3. Regional genetic diversity was lower than expected from patterns of local genetic diversity in D. pulex and D. obtusa populations in Flanders. This suggests that the subdivision of local Daphnia populations in a region did not obviously increase genetic diversity. 4. Genetic differentiation among populations of these three species in Flanders was moderate and comparable with values observed in other Daphnia species. Patterns of isolation‐by‐distance could be observed, but the scatter was high (D. pulex) or the slope was very low (D. obtusa).  相似文献   

15.
Small distance movements are of great importance for the dynamics of local populations of insects and can indirectly be assessed using molecular markers. We isolated six polymorphic microsatellite loci in the aphid species Metopeurum fuscoviride Stroyan, monophagous on the common Tansy (Tanacetum vulgare L.). Twenty‐five to 30 aphids from seven populations were analysed. Between three and 17 alleles were found per locus and expected heterozygosities ranged from 0.14 to 0.79. In total, 114 multilocus genotypes were found in 192 parthenogenetic aphids analysed, indicating that the resolution will be high enough to study differentiation on a small spatial scale.  相似文献   

16.
Summary  Three new species of Acanthaceae, Lepidagathis pseudoaristata Ensermu, Acanthopale aethio-germanica Ensermu, and Rhinacanthus mucronatus Ensermu, are described from Ethiopia. The three species are illustrated and their distributions mapped. The three new species are also compared to their presumed closest relatives. L. pseudoaristata is restricted to the Bale and Sidamo Regions, A. aethio-germanica is more widely distributed in Ethiopia occurring in the Kefa, Arsi, Sidamo and Bale Regions, and R. mucronatus is a local endemic restricted to the Borana area in the Sidamo Region. The conservation status of each species is also assessed.  相似文献   

17.
Polymorphism at 19 allozyme loci was studied in 227 individuals of the catfish, Chrysichthys maurus (Valenciennes, 1839), collected from ten populations representing nine different river basins in west Africa. Eleven of the loci studied were polymorphic. Analysis showed that populations clustered according to their geographical origin: eastern populations close to the root represented by a population of a closely related species (C. auratus); then populations from the centre of the species' range, followed by the more western populations. Networks observed, regression of genetic distances versus geographical distances, results of the Mantel test as well as the apomorphic status of two alleles suggested that the genetic differentiation corresponds to an isolation by distance model. These results strongly suggest that the populations initially occurred in the lagoons and rivers of Ivory Coast and from here spread to the western part of the species' range by progressively colonising basins from east to west.  相似文献   

18.
Allozyme polymorphism was studied in two populations of Isophya kraussi and Isophya stysi. Both species are flightless and have low dispersal ability. As a consequence, we expected high level of genetic differentiation among their local populations. Samples were collected in three regions of Hungary. Enzyme polymorphism was investigated at 10 loci (Aldox, Est, Got, Gpdh, Hk, Idh, Mdh, Me, Pgi and Pgm) in both species. High levels of polymorphism were detected in all samples. Gpdh proved to be diagnostic as there were no common alleles in the two species. At four further loci (Got, Hk, Mdh and Me), the two species had one common allele together with one or more differentiating alleles. We detected high F IT values implying a high level of genetic variation. The positive F IS values suggested a tendency of heterozygote deficiency in both species. The highly significant overall F ST values indicated clear genetic differentiation among the local populations. Thus our results confirmed the taxonomic status of these two species. The dendrogram constructed on the basis of Nei's genetic distances and the results of the PCA analyses fully confirmed those obtained by F-statistics.  相似文献   

19.
Mountain species have evolved important genetic differentiation due to past climatic fluctuations. The genetic uniqueness of many of these lineages is now at risk due to global warming. Here, we analyse allozyme polymorphisms of 1306 individuals (36 populations) of the mountain butterfly Erebia manto and perform Species Distribution Models (SDMs). As a consensus of analyses, we obtained six most likely genetic clusters: (i) Pyrenees with Massif Central; (ii) Vosges; (iii–v) Alps including the Slovakian Carpathians; (vi) southern Carpathians. The Vosges population showed the strongest genetic split from all other populations, being almost as strong as the split between E. manto and its sister species Erebia eriphyle. The distinctiveness of the Pyrenees‐Massif Central group and of the southern Carpathians group from all other groups is also quite high. All three groups are assumed to have survived more than one full glacial–interglacial cycle close to their current distributions with up‐hill and down‐slope shifts conforming climatic conditions. In contrast with these well‐differentiated groups, the three groups present in the Alps and the Slovakian Carpathians show a much shallower genetic structure and thus also should be of a more recent origin. As predicted by our SDM projections, rising temperatures will strongly impact the distribution of E. manto. While the populations in the Alps are predicted to shrink, the survival of the three lineages present here should not be at risk. The situation of the three other lineages is quite different. All models predict the extinction of the Vosges lineage in the wake of global warming, and also the southern Carpathians and Pyrenees‐Massif Central lineages might be at high risk to disappear. Thus, albeit global warming will therefore be unlikely to threaten E. manto as a species, an important proportion of the species’ intraspecific differentiation and thus uniqueness might be lost.  相似文献   

20.
The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号