首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular cartilage is an avascular, non-insulin-sensitive tissue that utilizes glucose as the main energy source, a precursor for glycosaminoglycan synthesis, and a regulator of gene expression. Facilitated glucose transport represents the first rate-limiting step in glucose metabolism. Previously, we demonstrated that glucose transport in chondrocytes is regulated by proinflammatory cytokines via upregulation of GLUT mRNA and protein expression. The objective of the present study was to determine differences in molecular mechanisms regulating glucose transport in chondrocytes stimulated with the anabolic transforming growth factor-beta1 (TGF-beta1) vs. the catabolic and proinflammatory cytokine IL-1beta. Both TGF-beta1 and IL-1beta accelerate glucose transport in chondrocytes. Although both IL-1beta and TGF-beta1 enhance glucose transport in chondrocytes to a similar magnitude, IL-1beta induces significantly higher levels of lactate. TGF-beta1-stimulated glucose transport is not associated with increased expression or membrane incorporation of GLUT1, -3, -6, -8, and -10 and depends on PKC and ERK activation. In contrast, IL-1beta-stimulated glucose transport is accompanied by increased expression and membrane incorporation of GLUT1 and -6 and depends upon activation of PKC and p38 MAP kinase. In conclusion, anabolic and catabolic stimuli regulate facilitated glucose transport in human articular chondrocytes via different effector and signaling mechanisms, and they have distinct effects on glycolysis.  相似文献   

2.
3.
ATP‐sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose‐sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels and membrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT‐1 and GLUT‐3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia‐like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT‐1 and GLUT‐3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT‐1 and GLUT‐3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus that modulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes. J. Cell. Biochem. 114: 1879–1889, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.  相似文献   

5.
6.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

7.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

8.
The uptake of glucose into mammalian cells, catalysed by members of the GLUT family of glucose transporters, is regulated by a variety of hormones, growth factors and other agents. In adipocytes, skeletal muscle and heart the principal regulator is the hormone insulin, which rapidly stimulates glucose uptake by bringing about the translocation of the GLUT4 glucose transporter isoform from an intracellular vesicular compartment to the cell surface. Recent studies have implicated theC-terminal hydrophilic region of this protein as being primarily responsible for its insulin-regulated trafficking. In an attempt to identify the protein machinery involved in this trafficking, we have used glutathione S-transferase fusion proteins bearing hydrophilic domains of various GLUT transporters in affinity purification experiments on detergent-solubilized extracts of 3T3-L1 adipocyte intracellular membranes. TheC-terminal region of GLUT4 was found specifically to bind a number of polypeptides in these extracts, which are therefore candidates for components of the trafficking machinery. Although these proteins did not bind to the corresponding region of the more widely-distributed GLUT1 glucose transporter isoform, regulation of this transporter also appears to be of physiological importance in some cell types. To study such regulation we have used as a model system the interleukin-3 (IL-3)-dependent haemopoietic cell line IC.DP. These cells express a temperature-sensitive mutane of thev-abl tyrosine kinase, whose activation at the permissive temperature permits cell survival in the absence of IL-3 by suppression of apoptosis, although the growth factor is still required for proliferation. Both IL-3 and activation of the kinase were found to stimulate glucose transport by promoting the translocation of GLUT1 to the cell surface. Moreover, inhibition of glucose uptake by addition of transport inhibitors markedly increased the rate of apoptosis, an effect which could be reversed by the provision of alternative energy sources. These observations suggest that the trafficking of GLUT1, regulated by growth factors or oncogenes, may play an important role in the suppression of apoptosis in haemopoietic cells.  相似文献   

9.
Effects of prolonged metabolic (glucose deprivation) and hormonal [insulin-like growth factor I (IGF-I)] challenge on regulation of glucose transporter (GLUT) expression, glucose transport rate and possible signaling pathways involved were studied in the neuroendocrine chromaffin cell. The results show that bovine chromaffin cells express both GLUT1 and GLUT3. Glucose deprivation and IGF-I activation led to an elevation of GLUT1 and GLUT3 mRNA, the strongest effect being that of IGF-I on GLUT3 mRNA. Both types of stimulus increased the GLUT1 protein content in a cycloheximide (CHX)-sensitive manner, and the glucose transport rate was elevated by 3- to 4-fold after 48 h under both experimental conditions. IGF-I-induced glucose uptake was totally suppressed by CHX. In contrast, only approximately 50% of transport activation in glucose-deprived cells was sensitive to the protein synthesis inhibitor. Specific inhibitors of mTOR/FRAP and p38 MAPK each partially blocked IGF-I-stimulated glucose transport, but had no effect on transport rate in glucose-deprived cells. The results are consistent with IGF-I-activated transport being completely dependent on new GLUT protein synthesis while the enhanced transport in glucose-deprived cells was partially achieved independent of new synthesis of proteins, suggesting a mechanism relying on preexisting transporters.  相似文献   

10.
Glucose transport in 3T3L1 adipocytes is mediated by two facilitated diffusion transport systems. We examined the effect of chronic glucose deprivation on transport activity and on the expression of the HepG2 (GLUT 1) and adipocyte/muscle (GLUT 4) glucose transporter gene products in this insulin-sensitive cell line. Glucose deprivation resulted in a maximal increase in 2-deoxyglucose uptake of 3.6-fold by 24 h. Transport activity declined thereafter but was still 2.4-fold greater than the control by 72 h. GLUT 1 mRNA and protein increased progressively during starvation to values respectively 2.4- and 7.0-fold greater than the control by 72 h. Much of the increase in total immunoreactive GLUT 1 protein observed later in starvation was the result of the accumulation of a non-functional or mistargeted 38 kDa polypeptide. Immunofluorescence microscopy indicated that increases in GLUT 1 protein occurred in presumptive plasma membrane (PM) and Golgi-like compartments during prolonged starvation. The steady-state level of GLUT 4 protein did not change during 72 h of glucose deprivation despite a greater than 10-fold decrease in the mRNA. Subcellular fractionation experiments indicated that the increased transport activity observed after 24 h of starvation was principally the result of an increase in the 45-50 kDa GLUT 1 transporter protein in the PM. The level of the GLUT 1 transporter in the PM and low-density microsomes (LDM) was increased by 3.9- and 1.4-fold respectively, and the GLUT 4 transporter content of the PM and LDM was 1.7- and 0.6-fold respectively greater than that of the control after 24 h of glucose deprivation. These data indicate that newly synthesized GLUT 1 transporters are selectively shuttled to the PM and that GLUT 4 transporters undergo translocation from an intracellular compartment to the PM during 24 h of glucose starvation. Thus glucose starvation results in an increase in glucose transport in 3T3L1 adipocytes via a complex series of events involving increased biosynthesis, decreased turnover and subcellular redistribution of transporter proteins.  相似文献   

11.
Three hexose transporter genes, the Na(+)/glucose cotransporters SGLT1 and SGLT3 (formerly SAAT1/pSGLT2) and the facilitative transporter GLUT1, are expressed in a renal epithelial cell line with proximal tubule characteristics. A number of studies have demonstrated that SGLT1 expression is coupled to the cellular differentiation state and is also negatively regulated by its substrate glucose. In the present study, we demonstrate that SGLT3 mRNA expression is relatively unaffected by conditions promoting dedifferentiation (reseeding to a subconfluent density, activation of protein kinase C) or differentiation (confluent cell density, activation of protein kinase A) nor was expression sensitive to hyperglycemic glucose levels in the medium. We further demonstrate that protein kinase A and protein kinase C exert opposing effects on GLUT1 and SGLT1 mRNA levels in polarized cell monolayers, indicating that GLUT1 mRNA is also highly regulated in polarized epithelial cells by agents affecting cell differentiation. The relatively constitutive expression of SGLT3 mRNA suggests a novel role for this low-affinity Na(+)/glucose cotransporter, to provide concentrative glucose uptake under hyperglycemic conditions where expression of high-affinity glucose cotransporter SGLT1 mRNA is significantly downregulated.  相似文献   

12.
Glucose transporter isoform expression was studied in the skeletal muscle-like cell line, C2C12. Northern and Western blot analysis showed that the insulin-responsive muscle/fat glucose transporter isoform, GLUT 4, was expressed in these cells at very low levels, whereas the erythrocyte isoform, GLUT 1, was expressed at readily detectable levels. Insulin did not stimulate glucose transport in this cultured muscle cell line. The C2C12 cells were then transfected separately with either GLUT 1 or GLUT 4, and stable cell lines expressing high levels of mRNA and protein were isolated. GLUT 1-transfected cells exhibited a 3-fold increase in the amount of the GLUT 1 transporter protein which was accompanied by a 2- to 3-fold increase in the glucose uptake rate. However, despite at least a 10-fold increase in GLUT 4 mRNA and protein detected after GLUT 4 cDNA transfection, the glucose uptake of these cells was unchanged and remained insulin-insensitive. By laser confocal immunofluorescence imaging, it was established that the transfected GLUT 4 protein was localized almost entirely in cytoplasmic compartments. In contrast, the GLUT 1 isoform was detected both at the plasma membrane as well as in intracellular compartments. These results suggest that acute insulin stimulation of glucose transport is not solely dependent on the presence of the insulin receptor and the GLUT 4 protein, and that the presence of some additional protein(s) must be required.  相似文献   

13.
The effect of prostaglandin F2alpha (PGF2alpha) on glucose transport in differentiated 3T3-L1 adipocytes was examined. Whereas PGF2alpha had little influence on insulin-stimulated 2-deoxyglucose uptake, it increased basal glucose uptake in a time- and dose-dependent manner, reaching maximum at approximately 8 h. The long-term effect of PGF2alpha on glucose transport was inhibited by both cycloheximide and actinomycin D. In concord, while the content of GLUT4 protein was not altered, immunoblot and Northern blot analyses revealed that both GLUT1 protein and mRNA levels were increased by exposure of cells to PGF2alpha. The effect of PGF2alpha on glucose uptake was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate (PMA), the stimulatory effects of PGF2alpha on glucose transport and GLUT1 mRNA accumulation were both inhibited. In accord, PMA was shown to stimulate GLUT1 mRNA accumulation. To further investigate if PKC may be activated by PGF2alpha, we tested several diacylglycerol-sensitive PKC isozymes and found that PGF2alpha was able to activate PKCepsilon. Taken together, these results indicate that PGF2alpha may enhance glucose transport in 3T3-L1 adipocytes by stimulating GLUT1 expression via a PKC-dependent mechanism.  相似文献   

14.
Glucose is an important metabolite and a structural precursor for articular cartilage and its transport has significant consequences for cartilage development and functional integrity. In this study the expression of facilitative glucose transporters (GLUTs) in human chondrocytes was investigated. Results showed that at least three GLUT isoforms (GLUT1, GLUT3 and GLUT9) are expressed by normal chondrocytes. Given the central role of glucose in chondrocyte physiology and metabolism, its regular provision via GLUTs will influence the metabolic activity and survival of chondrocytes in cartilage matrices.  相似文献   

15.
16.
Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transport in several cell types. Chronic inhibition of basal GSK-3 activity (8-24 h) in several cell types, including vascular smooth muscle cells, resulted in an approximately twofold increase in glucose uptake due to a similar increase in protein expression of the facilitative glucose transporter 1 (GLUT1). Conversely, expression of a constitutively active form of GSK-3beta resulted in at least a twofold decrease in GLUT1 expression and glucose uptake. Since GSK-3 can inhibit mammalian target of rapamycin (mTOR) signaling via phosphorylation of the tuberous sclerosis complex subunit 2 (TSC2) tumor suppressor, we investigated whether chronic GSK-3 effects on glucose uptake and GLUT1 expression depended on TSC2 phosphorylation and TSC inhibition of mTOR. We found that absence of functional TSC2 resulted in a 1.5-to 3-fold increase in glucose uptake and GLUT1 expression in multiple cell types. These increases in glucose uptake and GLUT1 levels were prevented by inhibition of mTOR with rapamycin. GSK-3 inhibition had no effect on glucose uptake or GLUT1 expression in TSC2 mutant cells, indicating that GSK-3 effects on GLUT1 and glucose uptake were mediated by a TSC2/mTOR-dependent pathway. The effect of GSK-3 inhibition on GLUT1 expression and glucose uptake was restored in TSC2 mutant cells by transfection of a wild-type TSC2 vector, but not by a TSC2 construct with mutated GSK-3 phosphorylation sites. Thus, TSC2 and rapamycin-sensitive mTOR function downstream of GSK-3 to modulate effects of GSK-3 on glucose uptake and GLUT1 expression. GSK-3 therefore suppresses glucose uptake via TSC2 and mTOR and may serve to match energy substrate utilization to cellular growth.  相似文献   

17.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

18.
Calpain system regulates muscle mass and glucose transporter GLUT4 turnover   总被引:2,自引:0,他引:2  
The experiments in this study were undertaken to determine whether inhibition of calpain activity in skeletal muscle is associated with alterations in muscle metabolism. Transgenic mice that overexpress human calpastatin, an endogenous calpain inhibitor, in skeletal muscle were produced. Compared with wild type controls, muscle calpastatin mice demonstrated normal glucose tolerance. Levels of the glucose transporter GLUT4 were increased more than 3-fold in the transgenic mice by Western blotting while mRNA levels for GLUT4 and myocyte enhancer factors, MEF 2A and MEF 2D, protein levels were decreased. We found that GLUT4 can be degraded by calpain-2, suggesting that diminished degradation is responsible for the increase in muscle GLUT4 in the calpastatin transgenic mice. Despite the increase in GLUT4, glucose transport into isolated muscles from transgenic mice was not increased in response to insulin. The expression of protein kinase B was decreased by approximately 60% in calpastatin transgenic muscle. This decrease could play a role in accounting for the insulin resistance relative to GLUT4 content of calpastatin transgenic muscle. The muscle weights of transgenic animals were substantially increased compared with controls. These results are consistent with the conclusion that calpain-mediated pathways play an important role in the regulation of GLUT4 degradation in muscle and in the regulation of muscle mass. Inhibition of calpain activity in muscle by overexpression of calpastatin is associated with an increase in GLUT4 protein without a proportional increase in insulin-stimulated glucose transport. These findings provide evidence for a physiological role for calpains in the regulation of muscle glucose metabolism and muscle mass.  相似文献   

19.
20.
Retinal endothelial cells are believed to play an important role in the pathogenesis of diabetic retinopathy. In previous studies, we and others demonstrated that glucose transporter 1 (GLUT1) is downregulated in response to hyperglycemia. Increased oxidative stress is likely to be the event whereby hyperglycemia is transduced into endothelial cell damage. However, the effects of sustained oxidative stress on GLUT1 regulation are not clearly established. The objective of this study is to evaluate the effect of increased oxidative stress on glucose transport and on GLUT1 subcellular distribution in a retinal endothelial cell line and to elucidate the signaling pathways associated with such regulation. Conditionally immortalized rat retinal endothelial cells (TR-iBRB) were incubated with glucose oxidase, which increases the intracellular hydrogen peroxide levels, and GLUT1 regulation was investigated. The data showed that oxidative stress did not alter the total levels of GLUT1 protein, although the levels of mRNA were decreased, and there was a subcellular redistribution of GLUT1, decreasing its content at the plasma membrane. Consistently, the half-life of the protein at the plasma membrane markedly decreased under oxidative stress. The proteasome appears to be involved in GLUT1 regulation in response to oxidative stress, as revealed by an increase in stabilization of the protein present at the plasma membrane and normalization of glucose transport following proteasome inhibition. Indeed, levels of ubiquitinated GLUT1 increase as revealed by immunoprecipitation assays. Furthermore, data indicate that protein kinase B activation is involved in the stabilization of GLUT1 at the plasma membrane. Thus subcellular redistribution of GLUT1 under conditions of oxidative stress is likely to contribute to the disruption of glucose homeostasis in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号