首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Complementary DNAs that encode two forms of the alpha subunit (Gs alpha) of the guanine nucleotide-binding protein responsible for stimulation of adenylate cyclase (Gs) have been inserted into plasmid vectors for expression in Escherichia coli. Following transformation of either of these plasmids into E. coli K38, Gs alpha accumulates to 0.4-0.8 mg/liter (approximately 0.1% of total protein), as judged by immunoblot analysis with specific antisera. Based on deduced amino acid sequence, the two cDNAs should encode proteins with molecular weights of 44,500 and 46,000, respectively (Robishaw, J.D., Smigel, M. D., and Gilman, A. G. (1986) J. Biol. Chem. 261, 9587-9590). Expression of these cDNAs in E. coli yields proteins that co-migrate on sodium dodecyl sulfate-polyacrylamide gels with the Gs alpha subunits from S49 lymphoma cell membranes, with apparent molecular weights of 45,000 and 52,000, respectively. Low levels of activity are detected in the 100,000 X g supernatant after lysis and fractionation of E. coli expressing either form of Gs alpha. Partial purification of Gs alpha from E. coli lysates yields preparations in which significant and stable activity can be assayed. Both forms of Gs alpha migrate through sucrose gradients as soluble, monodisperse species in the absence of detergent. As expressed in E. coli, both forms of Gs alpha can reconstitute isoproterenol-, guanine nucleotide-, and fluoride-stimulated adenylate cyclase activity in S49 cyc-cell membranes to approximately the same degree and can be ADP-ribosylated with [32P]NAD+ and cholera toxin. However, based on the specific activity of purified rabbit liver Gs, only 1-2% of the Gs alpha expressed in E. coli appears to be active. Incubation of partially purified fractions of recombinant Gs alpha with guanosine 5'-(3-O-thio)triphosphate and resolved beta gamma subunits isolated from purified bovine brain G proteins results in a 7-10-fold increase in Gs activity. Incubation of bovine brain beta gamma with recombinant Gs alpha also leads to a dramatic increase in observed levels of cholera toxin-catalyzed [32P]ADP-ribosylation.  相似文献   

2.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
ADP-ribosylation by pertussis toxin has been used to identify the alpha subunit of Ni, the guanine nucleotide-binding protein which mediates hormone and GTP inhibition of adenylate cyclase. Two proteins have been purified from bovine cerebral cortex which are substrates for ADP-ribosylation by pertussis toxin, a 41-kDa protein (alpha 41) and a 39-kDa protein (alpha 39). The 41-kDa protein is very similar to the subunit of Ni purified from other tissues while the function of the 39-kDa protein is unknown (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229; Sternweis, P. C., and Robishaw, J. D. (1984) J. Biol. Chem. 259, 13806-13813). We now show that the purified alpha 39 protein from bovine brain is a relatively hydrophilic protein which associates with a hydrophobic beta gamma component. The complex can be dissociated by guanosine 5'-(3-O-thio)triphosphate. The alpha 39 component binds guanosine 5'-(3-O-thio)triphosphate with a KD of 27 nM. We have developed polyclonal antibodies to alpha 39 and beta. The antibodies to alpha 39 cross-react weakly with alpha 41 in an immunoblot assay indicating some homology between the two proteins but making it unlikely that alpha 39 is derived from alpha 41. Using the antibodies for quantitation we found that alpha 39 is 0.5% and beta is 0.7% of membrane proteins. While the antibodies cross-react with alpha 39 and beta proteins in many different species, central nervous system tissues always have more immunoreactivity than membranes from peripheral organs. Anti-beta antibody recognizes the beta subunit when it is associated with alpha 39 or alpha 41 and can immunoprecipitate both alpha . beta gamma trimers. The guanine nucleotide-dependent dissociation of the alpha 39 . beta gamma trimer suggests that the complex could inhibit adenylate cyclase by liberating free beta gamma units. The function of alpha 39 may not, however, be exclusively to regulate adenylate cyclase but may include coupling hormone receptors to other effectors. Antibodies specific for alpha 39 and beta will be useful tools in determining the functions of alpha 39 and beta in hormone-responsive cells.  相似文献   

4.
The adenylyl cyclase complex, derived from turkey erythrocyte membranes, was activated using guanosine 5'-[beta, gamma-imido]triphosphate (Gpp[NH]p) and separated under low-detergent and low-salt conditions using conventional molecular-sieve chromatography followed by high-pressure ion-exchange and molecular-sieve chromatography. Although the complex remains activated with Gpp[NH]p throughout the isolation, the beta gamma subunits copurify with the cyclase. The stoichiometry of the cyclase to the alpha subunit of the stimulatory guanosine-nucleotide-binding regulatory protein (alpha s) to the beta subunit is close to unity, demonstrating that the beta gamma subunits do not dissociate from the Gs.cyclase complex (Gs, guanosine-nucleotide-binding regulatory protein) upon activation of the enzyme. If the final purification step was performed at high-salt concentrations, the beta gamma subunits could be separated from the alpha s.cyclase complex. Previously reported results on bovine brain cyclase also showed that the Gs.cyclase complex remains intact subsequent to activation by hormone and Gpp[NH]p [Marbach, I., Bar-Sinai, A., Minich, M. and Levitzki, A. (1990) J. Biol. Chem. 265, 9999-10,004]. These results, using adenylyl cyclase from two different sources, support our previous kinetic experiments which first suggested that beta gamma subunits are not released from Gs upon cyclase activation. We, therefore, argue that the mode of adenylyl cyclase inhibition by the inhibitory guanosine-nucleotide-binding regulatory protein cannot be via shifting the alpha s to beta gamma equilibrium as is commonly believed, and an alternate hypothesis is proposed.  相似文献   

5.
beta 2-Adrenergic receptors expressed in Sf9 cells activate endogenous Gs and adenylyl cyclase [Mouillac B., Caron M., Bonin H., Dennis M. and Bouvier M. (1992) J. Biol. Chem. 267, 21733-21737]. However, high affinity agonist binding is not detectable under these conditions suggesting an improper stoichiometry between the receptor and the G protein and possibly the effector molecule as well. In this study we demonstrate that when beta 2-adrenergic receptors were co-expressed with various mammalian G protein subunits in Sf9 cells using recombinant baculoviruses signalling properties found in native receptor systems were reconstituted. For example, when beta 2AR was co-expressed with the Gs alpha subunit, maximal receptor-mediated adenylyl cyclase stimulation was greatly enhanced (60 +/- 9.0 versus 150 +/- 52 pmol cAMP/min/mg protein) and high affinity, GppNHp-sensitive, agonist binding was detected. When G beta gamma subunits were co-expressed with Gs alpha and the beta 2AR, receptor-stimulated GTPase activity was also demonstrated, in contrast to when the receptor was expressed alone, and this activity was higher than when beta 2AR was co-expressed with Gs alpha alone. Other properties of the receptor, including receptor desensitization and response to inverse agonists were unaltered. Using antisera against an epitope-tagged beta 2AR, both Gs alpha and beta gamma subunits could be co-immunoprecipitated with the beta 2AR under conditions where subunit dissociation would be expected given current models of G protein function. A desensitization-defective beta 2AR (S261, 262, 345, 346A) and a mutant which is constitutively desensitized (C341G) could also co-immunoprecipitate G protein subunits. These results will be discussed in terms of a revised view of G protein-mediated signalling which may help address issues of specificity in receptor/G protein coupling.  相似文献   

6.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

7.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

8.
Most cells contain two forms of the alpha subunit of the G protein (Gs) that stimulates adenylate cyclase; their apparent molecular weights are 45,000 and 52,000. Two cDNAs that correspond to distinct mRNAs for the alpha subunit of Gs have been cloned from a bovine adrenal library and sequenced. The sequences of the two cDNAs, designated pGs-l and pGs-S, are identical except for a single stretch of 46 nucleotides in the coding region, where four are altered and 42 are deleted in pGs-S. Expression of pGs-S and pGs-l in COS-m6 cells yields protein products with apparent molecular weights of 45,000 and 52,000, respectively, based on their mobility in sodium dodecyl sulfate-polyacrylamide gels. We conclude that pGs-S and pGs-l encode the 45- and 52-kDa forms of Gs alpha, respectively, and propose that the mRNAs encoding these proteins arise from a single gene by internal alternative RNA splicing.  相似文献   

9.
The abalone sperm adenylate cyclase does not appear to be regulated by guanine nucleotides, but has a Mg2+-supported catalytic activity similar to other hormone- and guanine nucleotide-regulated enzymes (Kopf, G. S., and Vacquier, V. D. (1984) J. Biol. Chem. 259, 7590-7596; Kopf, G. S., and Vacquier, V. D. (1985) Biol. Reprod. 33, 1094-1104). The present studies were undertaken to ascertain whether the abalone enzyme has associated guanine nucleotide-binding regulatory proteins. Membrane fractions were incubated with either islet-activating protein (IAP) or cholera toxin and analyzed by sodium dodecyl sulfate SDS-polyacrylamide gel electrophoresis for the presence of toxin-catalyzed ADP-ribosylated proteins. The supernatant from a Lubrol PX-extracted 48,000 X g pellet fraction contained a Mr = 41,000 IAP substrate. This substrate could not be ADP-ribosylated prior to detergent extraction. Lubrol PX-solubilized fractions of membrane preparations from mouse, bovine, and human sperm also contained a Mr = 41,000 IAP substrate. These proteins co-migrated on sodium dodecyl sulfate-polyacrylamide gels with the Mr = 41,000 alpha i-subunit of the inhibitory guanine nucleotide-binding regulatory protein (Gi) from transformed chicken embryo fibroblast and mouse S-49 lymphoma membrane extracts. The sperm IAP substrates displayed similar protease digest patterns to alpha i of mouse S-49 lymphoma cells. Sea urchin sperm analyzed in a similar manner contained a Mr = 39,000 IAP substrate. Cholera toxin-catalyzed ADP-ribosylation of specific sperm membrane proteins was not observed in any of the sperm preparations tested. The presence of the beta-subunit common to both the stimulatory and inhibitory guanine nucleotide-binding regulatory heterotrimers was confirmed in sperm using an antiserum directed against the purified beta-subunit of the guanine nucleotide-binding regulatory proteins from bovine brain. It is concluded that all of the sperm tested, with the possible exception of sea urchin sperm, contain a Gi-like protein. Additional properties of these proteins and their role(s) in sperm function are currently being examined.  相似文献   

10.
Previous kinetic studies (Tolkovsky, A.M., Braun, S., and Levitzki, A. (1982) Proc. Natl. Acad. Sci. U. S.A. 79, 213-222) and biochemical studies (Arad, H., Rosenbusch, J., and Levitzki, A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 6579-6583) from our laboratory suggest that Gs or alpha s remain associated with the catalytic subunit of adenylyl cyclase (C) throughout the activation cycle of adenylyl cyclase by hormone receptors. In this study we have purified GppNHp-activated bovine brain adenylyl cyclase over 3000-fold under mild solution conditions. We demonstrate that although the enzyme is permanently activated it retains the beta subunit when bound to a forskolin-agarose affinity column as long as it is not exposed to high salt concentrations. The stoichiometry of alpha s to beta to C is close to unity, suggesting that beta gamma subunits do not dissociate from Gs upon its activation. The complex gamma beta alpha s (GppNHp). C dissociates partially when migrating on a Superose 12 fast protein liquid chromatography molecular-seiving column. This partial dissociation probably results from the relatively diluted state of the enzyme at a high degree of purity. Prolonged ultracentrifugation of the complex also causes partial dissociation of the beta gamma subunits from alpha s (GppNHp). C. The apparent contradiction between the results reported here and the observation that beta gamma subunits inhibit cyclase activity when added to platelet membranes (Katada, T., Bokoch, G. M., Northrup, J. K., Ui, M., and Gilman, A. G. (1984a) J. Biol. Chem. 259, 3568-3577) is discussed. We suggest an alternative model to account for this inhibitory effect of added beta gamma subunits.  相似文献   

11.
The G protein family of transmembrane signaling molecules includes Gs and Gi, the stimulatory and inhibitory regulators of adenylate cyclase. These and other characterized G proteins are comprised of beta, gamma, and alpha chains, the latter being the most variable among the proteins and thus serving to distinguish them. Previous results (Begin-Heick, N. (1985) J. Biol. Chem. 260, 6187-6193) suggested that the autosomal recessive mouse mutation obese (ob), which results in an abnormal response of adipose tissue to lipolytic hormones, is due to a defect in the gene coding for the alpha chain of Gi. In order to test this hypothesis we used a cloned cDNA probe representing murine Gi alpha mRNA in conjunction with a panel of Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes to map the Gi alpha gene in the mouse. In addition, we used a cDNA probe representing the murine Gs alpha gene to a specific mouse chromosome. Our results indicate that the Gi alpha locus maps to mouse chromosome 9, while Gs alpha is localized to region 2E1-2H3 of mouse chromosome 2. Localization of the Gi alpha gene to chromosome 9 excludes this gene as a site of the ob mutation, since the ob locus maps to chromosome 6. Furthermore, our findings indicate that certain members of the murine G protein alpha gene family have dispersed to different chromosomes since diverging from a common ancestral gene.  相似文献   

12.
The beta gamma subunits of guanine nucleotide binding proteins from bovine brain and bovine rod outer segments have different structural and immunochemical properties. In spite of these structural differences, beta gamma subunits from these sources have been found to be fully interchangeable in terms of their interaction with alpha subunits of pertussis-toxin-sensitive G proteins. In contrast, however, there are striking differences between these beta gamma subunits with regard to their ability to deactivate fluoride-stimulated Gs. These profound differences were also observed when the interaction of the purified components of the adenylate cyclase system was studied after reconstitution into phospholipid vesicles. Addition of beta gamma purified from bovine brain to vesicles containing beta-receptor and Gs results in a biphasic effect on receptor-stimulated GTPase activity, whereas addition of transducin beta gamma was virtually without any effect. Likewise, beta gamma from bovine brain, but not transducin beta gamma, affected adenylate cyclase activity of a reconstituted system consisting of three purified components (R, Gs, C). Thus, the alpha subunit of Gs, but not the alpha subunits of pertussis-toxin-sensitive G proteins discriminate between structurally different beta gamma subunits.  相似文献   

13.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

14.
Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.  相似文献   

15.
The specific mechanism by which the inhibitory guanine nucleotide binding protein (Gi) mediates the inhibition of adenylate cyclase activity is still unclear. The subunit dissociation model, based on studies in purified or reconstituted systems, suggests that the beta gamma subunit, which is dissociated with activation of Gi, inhibits the function of the stimulatory guanine nucleotide binding protein (Gs) by reducing the concentration of the free alpha s subunit. In the present study, Gs protein function is determined by measuring cholera toxin-blockable, isoproterenol-induced increases in guanosine triphosphate (GTP) binding capacity to rat cardiac ventricle membrane preparations. Carbamylcholine totally inhibited this beta-adrenergic receptor-coupled Gs protein function. Pretreatment of the cardiac ventricle membrane with pertussis toxin prevented this muscarinic agonist effect. These results confirm the possibility of an inhibitory agonist-receptor coupled effect through Gi on Gs protein function proximal to the catalytic unit of adenylate cyclase in an intact membrane preparation.  相似文献   

16.
We have examined the adenylate cyclase of human neutrophil membranes and compared it to that of human platelet membranes. Stimulated activities were at least 20-fold lower in the neutrophil than in the human platelet. The inhibitory hormone epinephrine was able to attenuate markedly the adenylate cyclase activity of human platelets at micromolar concentrations, whereas little inhibition was observed in the human neutrophil at up to 100 microM concentrations. When we examined the ability of exogenous pure beta/gamma subunits to affect adenylate cyclase activity in both systems, we observed dose-dependent inhibition of stimulated adenylate cyclase activities in the platelet, whereas no inhibition of neutrophil adenylate cyclase could be detected. This difference did not appear to be due to differences in the degree of incorporation of beta/gamma into each membrane. The effects of G protein alpha subunits were also examined. In the platelet, unliganded G protein alpha produced an increase in adenylate cyclase activity of limited extent which saturated at relatively low levels of alpha subunit. In the neutrophil, the effect of unliganded G protein alpha did not appear to saturate and produced much larger relative increases in adenylate cyclase activity. Quantitation of the free beta/gamma activity in neutrophil extracts detected free beta/gamma activity even in the absence of G protein activators. We hypothesize the human neutrophil to be a system in which an excess of free beta/gamma subunits is present and which suppresses neutrophil adenylate cyclase activity. This excess of free beta/gamma minimizes any additional effect of exogenous beta/gamma, but can be reversed by addition of proteins which can bind beta/gamma subunits, e.g. G alpha subunits.  相似文献   

17.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Phosphorylase kinase activity is renatured and detected in situ following electrophoresis of the denatured holoenzyme in a sodium dodecyl sulfate-polyacrylamide gel containing phosphorylase b that has been included in the gel polymerization according to the method of R. L. Geahlen et al. [(1986) Anal. Biochem. 153, 151-158]. Among the enzyme's four subunits, only gamma is catalytically active. When extract of rabbit muscle is electrophoresed and renatured in a similar manner, the phosphorylase-conversion activity is also associated only with a protein band that comigrates with the gamma subunit of phosphorylase kinase. This suggests that the gamma subunit of phosphorylase kinase may be the sole activity in rabbit muscle responsible for the phosphorylation of phosphorylase b. In an alternative method for the renaturation of activity from conventional sodium dodecyl sulfate-polyacrylamide gels, the subunits of the enzyme are visualized using 2.5 M KCl, excised from the gel, and eluted by diffusion into buffer containing sodium dodecyl sulfate, which is subsequently removed by acetone precipitation of the eluted subunits. Catalytic activity is recovered when the acetone precipitate of the extracted gamma subunit is dissolved in 6 M guanidine hydrochloride and diluted 50-fold into an activity assay. Inclusion of eluted alpha and beta subunits in the assay inhibits the activity of the gamma subunit, which supports our previous finding that the alpha and/or beta subunits suppress the activity of the catalytic gamma subunit [H. K. Paudel and G. M. Carlson (1987) J. Biol. Chem. 262, 11912-11915].  相似文献   

19.
Structural and functional studies of cross-linked Go protein subunits   总被引:3,自引:0,他引:3  
The guanine nucleotide binding proteins (G proteins) that couple hormone and other receptors to a variety of intracellular effector enzymes and ion channels are heterotrimers of alpha, beta, and gamma subunits. One way to study the interfaces between subunits is to analyze the consequences of chemically cross-linking them. We have used 1,6-bismaleimidohexane (BMH), a homobifunctional cross-linking reagent that reacts with sulfhydryl groups, to cross-link alpha to beta subunits of Go and Gi-1. Two cross-linked products are formed from each G protein with apparent molecular masses of 140 and 122 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both bands formed from Go reacted with anti-alpha o and anti-beta antibody. The mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is anomalous since the undenatured, cross-linked proteins have the same Stokes radius as the native, uncross-linked alpha beta gamma heterotrimer. Therefore, each cross-linked product contains one alpha and one beta subunit. Activation of Go by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) does not prevent cross-linking of alpha to beta gamma, consistent with an equilibrium between associated and dissociated subunits even in the presence of GTP gamma S. The same cross-linked products of Go are formed in brain membranes reacted with BMH as are formed in solution, indicating that the residues cross-linked by BMH in the pure protein are accessible when Go is membrane bound. Analysis of tryptic peptides formed from the cross-linked products indicates that the alpha subunit is cross-linked to the 26-kDa carboxyl-terminal portion of the beta subunit. The cross-linked G protein is functional, and its alpha subunit can change conformation upon binding GTP gamma S. GTP gamma S stabilizes alpha o to digestion by trypsin (Winslow, J.W., Van Amsterdam, J.R., and Neer, E.J. (1986) J. Biol. Chem. 261, 7571-7579) and also stabilizes the alpha subunit in the cross-linked product. Cross-linked G o can be ADP-ribosylated by pertussis toxin. This ADP-ribosylation is inhibited by GTP gamma S with a concentration dependence that is indistinguishable from that of the control, uncross-linked G o. These two kinds of experiments indicate that alpha o is able to change its conformation even though it cannot separate completely from beta gamma. Thus, although dissociation of the subunits accompanies activation of G o in solution, it is not obligatory for a conformational change to occur in the alpha subunit.  相似文献   

20.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta (35,000 Da) subunits are functionally indistinguishable. Gi and Gs both dissociate in the presence of guanine nucleotide analogs or Al3+, Mg2+, and F- in detergent-containing solutions. Several characteristics of Gi- and Gs-mediated regulation of adenylate cyclase activity have been studied in human platelet membranes. The nonhydrolyzable analog of GTP, guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) mimics GTP-dependent hormonal inhibition or stimulation of adenylate cyclase under appropriate conditions. This inhibition or stimulation follows a lag period. The combined addition of epinephrine or prostaglandin E1 with GTP gamma S results in the immediate onset of steady state inhibition or activation. The effects of the GTP analog are essentially irreversible. Fluoride is also an effective inhibitor of prostaglandin E1-stimulated adenylate cyclase, while it markedly stimulates the basal activity of the enzyme. The addition of the resolved 35,000-Da subunit of Gi to membranes results in inhibition of adenylate cyclase, and the resolved 41,000-Da subunit has a stimulatory effect on enzymatic activity. The inhibitory action of the 35,000-Da subunit is almost completely abolished in membranes that have been irreversibly inhibited by GTP gamma S plus epinephrine; this irreversible inhibition is almost completely relieved by the 41,000-Da subunit. Detergent extracts of membranes that have been treated with GTP gamma S plus epinephrine contain free 35,000-Da subunit. The 41,000-Da subunit of Gi contained in such extracts has a reduced ability to be ADP-ribosylated by islet-activating protein (IAP), which implies that this subunit is in the GTP gamma S-bound form. The irreversible inhibition of adenylate cyclase caused by GTP gamma S (plus epinephrine) in membranes is highly correlated with the liberation of free 35,000-Da subunit activity and is inversely related to the 41,000-Da IAP substrate activity in detergent extracts prepared therefrom. The increase in free 35,000-Da subunit activity in extracts and the inhibition of adenylate cyclase activity in GTP gamma S (plus epinephrine)-treated membranes are both markedly inhibited by treatment with IAP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号