首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The tCUP cryptic constitutive promoter was discovered in the tobacco genome by T-DNA (transfer DNA) tagging with a promoterless GUS-nos gene. Here, we show that the portion of the tCUP sequence containing a variety of cryptic gene regulatory elements is related to a new family of moderately repetitive sequences (10(2) copies), the RENT (repetitive element from Nicotiana tabacum) family. The RENT family is found only in certain Nicotiana species. Five RENT elements were cloned and sequenced. The RENT elements are a minimum of 5 kb in length and share 80-90% sequence similarity throughout their length. The 5' termini are the same in the isolated RENT family members and are characterized by a conserved border sequence (TGTTGA(T or C)ACCCAATTTT(T or C)). The 3' ends of RENT sequence similarity vary in location and sequence. The tCUP cryptic promoter originated from a unique truncated RENT element that interrupts a phytochelatin synthase-like gene that may have undergone rearrangements prior to or resulting from T-DNA insertion. No evidence was found for expressed coding regions within the RENT elements; however, like the cryptic gene regulatory elements within the tCUP sequence, the isolated RENT elements possess promoter activity and translational enhancer activity.  相似文献   

4.
The soybean Gmhsp17.3-B heat shock promoter is developmentally regulated in transgenic tobacco, as indicated by the constitutive expression of a -glucuronidase reporter in seeds [16]. In this paper, we show that both the heat shock promoter-driven -glucuronidase activity and the mRNA of the endogenous Nthsp18P gene accumulate coincident with the onset of seed desiccation. Deletions of the soybean Gmhsp17.3-B promoter, encompassing the heat shock element (HSE)-containing regions, revealed a co-localization of sequences responsible for heat induction and developmental expression. Moreover, synthetic HSEs fused to a TATA box sequence had the potential to stimulate the developmental expression of a GUS reporter gene in seeds of transgenic plants.  相似文献   

5.
Expression of chalcone synthase (CHS), the first enzyme in the flavonoid branch of the phenylpropanoid biosynthetic pathway in plants, is induced by developmental cues and environmental stimuli. We used plant transformation technology to delineate the functional structure of the French bean CHS15 gene promoter during plant development. In the absence of an efficient transformation procedure for bean, Nicotiana tabacum was used as the model plant. CHS15 promoter activity, evaluated by measurements of -d-glucuronidase (GUS) activity, revealed a tissue-specific pattern of expression similar to that reported for CHS genes in bean. GUS activity was observed in flowers and root tips. Floral expression was confined to the pigmented part of petals and was induced in a transient fashion. Fine mapping of promoter cis-elements was accomplished using a set of promoter mutants generated by unidirectional deletions or by site-directed mutagenesis. Maximal floral and root-specific expression was found to require sequence elements located on both sides of the TATA-box. Two adjacent sequence motifs, the G-box (CACGTG) and H-box (CCTACC(N)7CT) located near the TATA-box, were both essential for floral expression, and were also found to be important for root-specific expression. The CHS15 promoter is regulated by a complex interplay between different cis-elements and their cognate factors. The conservation of both the G-box and H-box in different CHS promoters emphasizes their importance as regulatory motifs.  相似文献   

6.
To determine the mechanisms involved in the regulation of human cytomegalovirus early gene expression, we have examined the gene that encodes the viral DNA polymerase (UL54, pol). Our previous studies demonstrated that sequences required for activation of the pol promoter by immediate-early proteins are contained within a region from -128 to +20 and that cellular proteins can bind to this activation domain. In this study, we demonstrate by competition analysis that binding of cellular proteins to pol is associated with an 18-bp region containing a single copy of a novel inverted repeat, IR1. Time course analysis indicated that viral infection increased the level of protein binding to IR1, concurrent with the activation of the pol promoter. Mutation of the IR1 element abrogated binding of cellular factors to the pol promoter and reduced by threefold the activation by immediate-early proteins. Similarly, mutation of IR1 rendered the promoter poorly responsive to activation by viral infection. Mutation of additional sequence elements in the pol promoter had little effect, indicating that IR1 plays the major role in pol promoter regulation. These studies demonstrate that the interaction between cellular factors and IR1 is important for the regulation of expression of the polymerase gene by viral proteins.  相似文献   

7.
8.
9.
10.
11.
12.
Summary Maturing pea cotyledons accumulate large quantities of storage proteins at a specific time in seed development. To examine the sequences responsible for this regulated expression, a series of deletion mutants of the legA major seed storage protein gene were made and transferred to tobacco using the Bin19 disarmed Agrobacterium vector system. A promoter sequence of 97 bp including the CAAT and TATA boxes was insufficient for expression. Expression was first detected in a construct with 549 bp of upstream flanking sequence which contained the the leg box element, a 28 bp conserved sequence found in the legumintype genes of several legume species. Constructs containing-833 and-1203 bp of promoter sequence significantly increased levels of expression. All expressing constructs preserved seed specificity and temporal regulation. The results indicate that promoter sequences between positions-97 and-549 bp are responsible for promoter activity, seed specificity, and temporal regulation of the pea legA gene. Sequences between positions-549 and-1203 bp appear to function as enhancer-like elements, to increase expression.  相似文献   

13.
Wounding hybrid poplar (Populus trichocarpa × P. deltoides) trees results in the expression of novel wound-inducible (win) mRNAs thought to encode proteins involved in defense against pests and pathogens. Members of thewin6 gene family encode acidic multi-domain chitinases, with combined structure and charge characteristics that differ from previously described chitinases.Win6 expression has been shown to occur in pooled unwounded leaves of a wounded (on multiple leaves) poplar plant. Here we demonstrate that wounding a single leaf induceswin6 expression locally, in the wounded leaf, and remotely, in specific unwounded leaves with strong vascular connections to the wounded leaf. We also demonstrate that awin6 promoter--glucuronidase (GUS) gene fusion (win6-GUS) responds to wounding locally and remotely in transgenic tobacco. These data indicate that the poplarwin6 promoter has regulatory elements that are responsive to wound signals in the heterologous host. In addition,win6-GUS is developmentally activated in unwounded young leaves and floral tissues of transgenic tobacco. Similar developmental expression patterns are found to occur forwin6 in poplar trees, demonstrating that a herbaceous plant can serve as a host for woody tree transgene analysis and can accurately predict expression patterns in tree tissues (e.g. flowers) that would be difficult to study in free-living trees.  相似文献   

14.
15.
16.
17.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5′ flanking DNA sequence from the str246C gene fused to the β-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5′ deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.  相似文献   

18.
19.
20.
The promoter region of the Agrobacterium tumefaciens T-cyt gene was fused to a -glucuronidase (gusA) reporter gene and introduced into tobacco plants. Detection of gusA expression in transgenic F1 progeny revealed that the T-cyt promoter is active in many, if not all, cell types in leaves, stems and roots of fully developed plants. Developmental stage-dependent promoter activity was observed in seedlings. Analysis of 5-deleted promoter fragments showed that sequences located between positions–185 and –139 with respect to the T-cyt translational start codon are essential for T-cyt promoter activity in transfected tobacco protoplasts as well as in transformed tobacco plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号