首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Why biomanipulation can be effective in peaty lakes   总被引:1,自引:1,他引:0  
The effects of fish stock reduction (biomanipulation) was studied in an 85 ha shallow peaty turbid lake. The lake cleared in a 4-week period in April–May 2004, which demonstrated that biomanipulation can be effective in peaty lakes. We demonstrated that it is possible to reduce the fish stock to <25 kg ha−1 benthivorous fish and <15 kg ha−1 planktivorous fish, sufficiently low to switch the lake from a turbid to a clear state. Knowledge of lake morphology, fish stock, fish behaviour, and a variety of fishing methods was necessary to achieve this goal. It is expected that continuation of fisheries to remove young of the year planktivorous species is needed for several years, until macrophytes provide sufficient cover for zooplankton and can compete with phytoplankton. Cladocerans developed strongly after fish removal. The clearing of the lake coincided with a sudden decrease of filamentous cyanobacteria and suspended detritus, and a strong increase of Bosmina. We assume that Bosmina was able to reduce filamentous prokaryotes and detritus. After the disappearance of the cyanobacteria, Bosmina disappeared too. After the clearing of the lake Daphnia dominated in zooplankton and apparently was able to keep phytoplankton levels low. In our case, wind resuspension did not prevent biomanipulation from being successful. No correlation between windspeed and turbidity was found, neither in an 85 ha nor in a 230 ha shallow peaty lake. Regression analysis showed that on average 50% of the amount of suspended detritus can be explained by resuspension by fish and 50% by phytoplankton decomposition. The main goal of this biomanipulation experiment, clear water and increased submerged plant cover in a shallow peaty lake, was reached.  相似文献   

2.
Some well-documented studies on restoring eutrophic lake systems in The Netherlands by fish stock management have been evaluated with the emphasis on the role of macrophytes. Furthermore, the factors determining the light climate for submerged macrophytes in a large shallow eutrophic lake (Lake Veluwe) have been assessed and the potential success of biomanipulation in large scale projects is discussed. Today relatively little attention has been paid to macrophyte management although the importance of macrophytes in lake restoration has been recognized regularly. The biomanipulation strategy was successful in small scale projects. In a large scale project, however, wind-induced resuspension may largely determine the underwater light climate through attenuation by the water column and periphytic layer. Therefore, restoration of relatively large waterbodies by fish stock management only is expected not to lead to any noteworthy improvement of the light climate for submerged macrophytes. Additional measures aimed at reducing wind-induced resuspension of sediment particles and reestablishing of the macrophyte stands are required for successful biomanipulation strategies. Water quality managers should pay more attention to macrophyte stands in biomanipulation projects because macrophytes enhance a more stable and diverse ecosystem. Restoration objectives and the methods of their achievement must be carefully planned since an abundant submerged macrophyte vegetation may have undesirable effects as well.  相似文献   

3.
Accurate prediction of species changes in lake ecosystems following biomanipulation measures is of paramount importance in view of water quality management. The temporal variation of phytoplankton biomass as chlorophyll-a and transparency as Secchi depth measurements are studied in the Lake Bleiswijkse Zoom, The Netherlands, with a comprehensive structural dynamic model. In the formulation of the biological model, phytoplankton as several species, zooplankton, detritus, planktivores and benthivores, and piscivores are considered to be major contributing state variables for the model. The primary goal of this paper is to describe the possible impacts of several environmental scenarios on chlorophyll-a biomass qualitatively as it would help lake and environmental managers and relevant authorities elucidate the processes of eutrophication and biomanipulation in a broad way. Some of the scenarios that have been studied by this model are: (1) The effect of fixed stoichiometry in terms of internal nitrogen and phosphorus that are tied up within algal cells; (2) the effects of external phosphorus limitation; (3) light limitation and external nitrogen limitation on algal growth; (4) probable consequences that have taken place within the chlorophyll-a biomass due to change in biomasses of various aquatic organisms; and (5) possible changes of chlorophyll-a biomass due to higher temperatures caused by global warming.  相似文献   

4.
Biomanipulation of lake ecosystems: an introduction   总被引:6,自引:0,他引:6  
SUMMARY 1. This paper is an introduction to a special issue of Freshwater Biology containing selected papers from an international symposium on Food Web Effects of Fish in Lake Ecosystems: Research Progress, Water Quality and Fisheries Management held from 31 May to 3 June 2000 in Rheinsberg, Germany. The primary goal of the workshop was to enlarge the current view of fish-induced effects on lake ecosystems. An additional goal was to promote biomanipulation as a multiple-use tool for managing freshwater ecosystems.
2. The three main topics addressed at the workshop were: (i) mechanisms involved in biomanipulation, (ii) whole-lake case studies and (iii) management aspects in water quality and fisheries.
3. Mortality of Daphnia , nutrient recycling, habitat selection and fish predation are reported as important mechanisms governing food-web effects as a result of biomanipulation.
4. Whole-lake case studies indicate that repeated fish removal can help improve water quality of shallow lakes, but successful biomanipulation of deep, thermally stratifying lakes remains difficult.
5. In many cases, biomanipulation of lakes has proved to provide benefits in addition to improving water quality. As all lake users are potentially affected when biomanipulation is used as a lake management tool, their concerns need to be clearly recognised if biomanipulation is to be successful in practice.  相似文献   

5.
A. F. Richter 《Aquatic Ecology》1986,20(1-2):165-172
Biomanipulation as a tool for lake restoration is discussed mainly using literature data. It is based on the exploitation of the interactions both within and between the trophic levels in an aquatic ecosystem. Important among the interactions are: competition for light and nutrients between aquatic macrophytes and phytoplankton and among different phytoplankton species; grazing by planktonic and benthic filter feeders; and size-selective predation by fish. In several case studies biomanipulation has proved to be successful in restorating mildly eutrophic small waterbodies. However, for long-term stability of the restored ecosystems supplementary measures like reducing the external nutrient loadings are needed. The feasibility of the different biomanipulation measures to improve the water quality in shallow Dutch lakes is discussed. Preliminary results on biomanipulation experiments in enclosures withOscillatoria agardhii and the benthic filter feederDreissena polymorpha are given.  相似文献   

6.
Lake Zwemlust, a small highly eutrophic lake, was biomanipulated without reducing the external nutrient loading, and the effects were studied for four years. In this paper we pay special attention to the shifts in relative distribution of nitrogen and phosphorus in the different trophic levels and to the changes in growth limitation of the autotrophs.Despite of the high external nutrient loads to the lake (ca 2.4 g P m–2 y–1 and 9.6 g N m–2 y–1), the effects of biomanipulation on the lake ecosystem were pronounced. Before biomanipulation no submerged vegetation was present in the lake and P and N were stored in the phytoplankton (44% N, 47% P), fish (33% N, 9% P) and in dissolved forms (23% N, 44% P). P and N contents in sediments were not determined. In the spring and summer following the biomanipulation (1987), zooplankton grazing controlled the phytoplankton biomass and about 90% of N and P were present in dissolved form in the water. From 1988 onwards submerged macrophyte stands continue to thrive, reducing the ammonium and nitrate concentrations in the water below detection levels. In July 1989 storage of N and P in the macrophytes reached 86% and 80%, respectively. Elodea nuttallii (Planchon) St.John, the dominant species in 1988 and 1989, acted as sink both for N and P during spring and early summer, withdrawing up to ca 60% of its N and P content from the sediment. At the end of the year only part of the N and P from the decayed macrophytes (ca 30% of N and 60% of P) was recovered in the water phase of the ecosystem (chiefly in dissolved forms). The rest remained in the sediment, although some N may have been released from the lake by denitrification.In summer 1990 only 30% of the N and P was found in the macrophytes (dominant species Ceratophyllum demersum L.), while ca 30% of N and P was again stored in phytoplankton and fish.  相似文献   

7.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

8.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

9.
In two years after biomanipulation of Lake Zwemlust (The Netherlands), macrophytes (helophytes, elodeids) and filamentous algae developed luxuriantly in the lake. They influenced the structure of macroinvertebrate communities inhabiting them. Macrophytes and algae, by changing environmental and trophic conditions, also affected the composition of macrozoobenthos. Vascular plants served as an important source of food for zoobenthos and phytofauna, mainly after they were decomposed. Filamentous algae were consumed readily alive by many animals. Invertebrates appeared to be important as a potential nutrient source for hydrophytes.  相似文献   

10.
Hosper  S. H.  Jagtman  E. 《Hydrobiologia》1990,200(1):523-534

Eutrophication control is one of the major issues in the environmental policy in The Netherlands. As a result of international action programmes the average phosphorus loading of freshwater systems should decrease by 50% between 1985 and 1995. However, in many cases the restoration of water quality requires additional measures. Recovery is hampered by the structure and functioning of the present food-chain.

The feeding behaviour of the dominant fish species in Dutch lakes, bream and roach, tend to impose a homeostasis on the system, resisting restoration of water quality. In shallow lakes, biomanipulation, including drastic reduction of fish-stocks, may induce a shift from a stable ‘turbid-water state’ to a stable ‘clear-water state’.

To assess the possibilities of biomanipulation for the restoration of a particular lake, three questions are relevant: (1) is a drastic reduction of fish-stocks feasible?, (2) will a shift occur from ‘turbid to clear’ after the fish reduction? and (3) will the new situation of clear water be stable? This paper focuses attention on the last two questions. The increase in water clarity, following fish reduction, largely depends on the increase in the density of the Daphnia-population and the contribution of benthivorous fish to the resuspension of sediments. A ‘turbid to clear’ shift may be expected if the total biomass of planktivorous and benthivorous fish is reduced to levels<50 kg ha?1. The stability of the achieved clear-water state largely depends on the development of submerged macrophytes in the lake and on the level of nutrient loading. It is tentatively concluded that a stable clear-water state may be expected at initial total-P concentrations<0.10 mg l?1.

Because the water managers in The Netherlands have no fishing rights, they have to.co-operate with anglers and commercial fishermen to apply biomanipulation as a tool for water management.

  相似文献   

11.
We evaluated a biomanipulation program to test for short-term changes in water quality (chlorophyll a, Secchi depth, total phosphorus) and macrozooplankton biomass following partial removal of omnivorous gizzard shad Dorosoma cepedianum. The removal occurred at a eutrophic subtropical lake, and responses were compared to an unmanipulated control lake using a before-after-control-impact paired series analysis. The removal reduced the biomass of large (>300 mm) gizzard shad by 75% over 2 years via a subsidized commercial gill net fishery. However, the total population biomass of gizzard shad was reduced by approximately 32% from an average pre-manipulation biomass of 224 kg ha−1 due to the size selectivity of the gear, which did not effectively capture small fish (<300 mm). No significant short-term changes in chlorophyll a concentration, Secchi depth, total phosphorus concentration or macrozooplankton biomass were detected following biomanipulation. The partial removal may have fallen short of the biomass reduction required to cause ecosystem responses. Our results suggest that moderate omnivore removals (i.e., <40% biomass reduction) will have little short-term benefits to these lakes, and future manipulations should use a less size-selective gear to achieve a larger total biomass reduction.  相似文献   

12.
Restoration of the highly eutrophic Reeuwijk lakes (ca. 700 ha) started in 1986 by reducing the external phosphorus loading. As an additional measure to improve the quality of the lake water, the structure of the fish population in Lake Klein Vogelenzang (18 ha) was altered in 1989 by the removal of ca. 100 kg ha–1 bream from the lake in April and December. This constituted about 50% of the total bream biomass in the lake.The fish-stock reduction in April, 1989, was initially followed by high phosphorus concentrations, probably the result of considerable phosphorus release from the sediments. The resulting heavy algal blooms that occurred reduced the transparency to very low values. During the summer the zooplankton population increased markedly in numbers coinciding with reductions in total suspended matter including (blue-green) algae. A great improvement in Secchi-disc transparency was observed and by the end of December, 1989, the bottom of the lake (1.5–2.0 m) was visible. After heavy storms in January and February 1990, transparency dropped to < 1 m as a result of resuspension of high concentrations of suspended matter from the bottom sediments. Although transparency over the rest of 1990 was higher than in 1988, i.e. the year preceding the removal of fish (biomanipulation), it was lower than expected, based on the results of 1989. The study shows that technical and biological factors can cause serious management problems for the implementation of biomanipulation in larger water bodies.  相似文献   

13.
The biomanipulation study in Lake Zwemlust (area 1.5 ha; mean depth 1.5 m) is among the series of such investigations initiated recently in The Netherlands. The effects of the lake's reffilling (after it was first completely drained empty) almost entirely the nutrient-rich seepage water from the River Vecht flowing nearby and of removal of the planktivorous bream (Abramis brama), on zooplankton community structure and feeding activities of crustaceans were monitored for two successive years (1987, 1988). In these years a classical pattern of succession occurred, with the rotifer spring maximum preceding the crustacean maximum by about 3 weeks. Among the fiveDaphnia species, which appeared in quick succession during May–July, two were large-bodied forms (D. magna; D. pulex). OnlyD. pulex persisted and was the important grazer species in the second year, especially in spring. In the first year the crustacean grazing, with several values >100%.d–1, contributed significantly to the lake's improved water clarity, with Secchi-disc transparencies of 1.5 m and more almost throughout the summer, compared with 0.3 m before the biomanipulation. Even though the water clarity climate in the second year was quite similar to that in the first, the causal factor was high macrophytic vegetation, rather than zooplankton grazing. The lake developed a rich littoral flora and fauna in the second year in response to the optimal light and nutrient conditions. Apparently, the predation by the introduced planktivorous rudd (Scardinius erythrophthalmus) on zooplankton was an important factor in the changes in zooplankton structure, and in the reduced role of zooplankton in seston elimination during the second year. There is some evidence from bioassay work that, simultaneously with the littoral development, nitrogen limitation of the phytoplankton also contributed to the improved light situation in the second year.  相似文献   

14.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

15.
Ozimek  Teresa  Gulati  Ramesh D.  van Donk  Ellen 《Hydrobiologia》1990,200(1):399-407
Lake Zwemlust (area 1.5 ha, Zm 1.5 m) has been the object of an extensive limnological study since its biomanipulation involving removal of planktivorous fish (bream) in March 1987 and emptying of the lake. In the subsequent summer period of 1987 the Secchi depth increased to the lake bottom (2.5 m), compared withca 30 cm in the earlier summers. The reaction of submerged macrophytes to improving under-water light climate was rapid. In summer 1987, besides the introducedChara globularis, 5 species of submerged macrophytes occurred and colonized 10% of the lake area. In 1988 and 1989 only quantitative changes were observed; new species did not appear, but the area colonized by macrophytes increased by 7 and 10 times, respectively.Elodea nuttallii was dominant among the macrophytes andMougeotia sp. among the filamentous green algae. Their abundance, contributed to transient N-limination of phytoplankton causing a persistent clear water phase in 1988 and 1989, unlike in 1987 when zooplankton grazing contributed chiefly to the water clarity. Laboratory bioassays on macrophytes confirmed nitrogen limitation.  相似文献   

16.
Biomanipulation improved water transparency of Lake Zwemlust (The Netherlands) drastically. Before biomanipulation no submerged vegetation was present in the lake, but in summer 1987, directly after the measure, submerged macrophyte stands developed following a clear-water phase caused by high zooplankton grazing in spring. During the summers of 1988 and 1989 Elodea nuttallii was the most dominant species and reached a high biomass, but in the summers of 1990 and 1991 Ceratophyllum demersum became dominant. The total macrophyte biomass decreased in 1990 and 1991. In 1992 and 1993 C. demersum and E. nuttallii were nearly absent and Potamogeton berchtholdii became the dominant species, declining to very low abundance during late summer. Successively algal blooms appeared in autumn of those years reaching chlorophyll-a concentrations between 60–130 µg l–1. However, in experimental cages placed on the lake bottom, serving as exclosures for larger fish and birds, E. nuttallii still reached a high abundance during 1992 and 1993. Herbivory by coots (Fulica atra) in autumn/winter, and by rudd (Scardinius erythrophthalmus) in summer, most probably caused the decrease in total abundance of macrophytes and the shift in species composition.  相似文献   

17.
The modelPCLAKE describes the phosphorus and nitrogen cycles within a shallow lake ecosystem, including the sediment and a simplified biological food web. All components are modelled in a generalized way rather than a very detailed one. This model has been applied to Lake Zwemlust, a small biomanipulated lake in The Netherlands. Formerly, this highly eutrophic lake was dominated by cyanobacteria and devoid of macrophytes. Biomanipulation was carried out in 1987 by pumping-out of the water, removal of all fish, and refilling of the lake with seepage water. The lake was restocked with some rudd, pike, zooplankton and seedlings of macrophytes, and then monitored up to 1992. Macrophytes developed rather quickly and reached their maximum biomass during the six-years period in 1989. Despite the continuously high nutrient (N and P) loading, algal biomass remained low due to nitrogen limitation, caused by competition with the macrophytes. From 1990 onwards, the macrophytes declined again and a species shift occurred, following an increase of herbivorous birds on the lake and the development of herbivorous fishes.Model simulations grossly reproduced the observed developments in Lake Zwemlust before and after the biomanipulation measures. The existence of multiple steady states at the same trophic state and the possible shift between them could be simulated well. This study also demonstrates the interrelation between system structure and the distribution and cycling of nutrients. It is concluded, that within general boundary conditions set by the trophic state of the system, the food web structure determines the actual nutrient flows and the occurrence of nutrient limitations of the primary producers. It is shown that both aspects can be integrated in one mathematical model. The long-term stability of the macrophyte dominance in the lake is discussed.  相似文献   

18.
19.
Results obtained from a step by step approach to the biomanipulation of a natural lacustrine environment (Lago di Candia, Northern Italy) are presented. Since the diversion of the municipal sewage of the small town of Candia, runoff and precipitation have been the sole contributors of nutrient to the lake. Fish population is mainly characterized by rudd (Scardinius erythrophthalmus) overstocking and by a low density of large-mouth-bass (Micropterus salmoides) and pike (Esox lucius). During 1986 about 12t of rudd (1–2 year old) were removed from the lake. Considering 1986 as ‘control year’, average Secchi disc transparency improved from 2.3 m in 1986 to 3.3 m in 1988; phytoplankton biovolume decreased from 114 to 58 mm3 l−1 but zooplankton biovolume increased from 8 to 11.5 mm3 l−1. The results achieved show that a grodual biomanipulation treatment can have a satisfactory outcome, and has the advantage of not producing catastrophic situations either in the biotic or in the abiotic compartments of the lake.  相似文献   

20.
During the symposium Restoration and recovery of shallow lake ecosystems in The Netherlands studies on restoration of eutrophic lakes were addressed and discussed. Many Dutch shallow lakes have received high external loadings of phosphorus through supply water that is influenced by the River Rhine and loadings in The Netherlands. Two important Action Plans (the Rhine Action Plan, the North Sea Action Plan) are now in operation to reduce nutrient emissions. The targets set are not likely to be fully reached, so that supplementary reduction of phosphorus supplied to inland fresh waters will be required. In several shallow lakes such a reduction has been achieved recently, but without leading to discernible recovery. The main causes of delay are phosphorus storage and its subsequent release from sediments and foodweb; however, the remaining extraneous phosphorus supply is often still too high. Supplementary actions are, therefore, called for. A further reduction of phosphorus inputs is suggested, besides supplementary measures proposed, viz. dredging, flushing, biomanipulation, chemomanipulation. Restoration to the past situation via upwelling groundwater appeares to be feasible in some cases. There is a common consensus that each lake behaves differently depending to its morphology, hydrology and history of eutrophication. Therefore each lake has to be studied before restoration measures can be applied. Besides, the ecosystem should not only be studied as a separate entity, but as a part of systems of a higher integration level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号