首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of our study was to determine the effect of conditioning media with homologous porcine uterine cells on the developmental rate of porcine embryos. Cell monolayers were prepared by selective dissection and digestion of sections from the uterus of prepuberal gilts that were primed with PMSG and hCG. Conditioned media were used with 2 type of embryos: 4-cell stage (Experiment 1) or blastocyst stage (Experiment 2). In Experiment 1, embryos were collected surgically by flushing the oviducts, 36 to 48 h following the first of 2 inseminations. Embryos were cultured in Whitten's medium containing 1.5% BSA as a protein source until they attained the 4-cell stage. Embryos at the 4-cell stage were cultured randomly in either Whitten's medium with 1.5% BSA or Whitten's medium with 1.5% BSA that was previously conditioned for 24 h with an endometrial epithelial cell monolayer. Embryos were cultured in 50-microl drops covered with oil in a 38.5 degrees C, 5% CO(2) in air incubator. There was no advantage to using the conditioned media with the 4-cell stage embryos. The embryos were less developed than those cultured in nonconditioned Whitten's medium (P <0.001). In Experiment 2, embryos were cultured at the blastocyst stage. They were recovered the same way as in Experiment 1 and then cultured in Whitten's medium containing 1.5% BSA until they reached the blastocyst stage. At the blastocyst stage (Day 6), embryos were randomly assigned to 1 of the 6 following treatments: Whitten's with 1.5% BSA or Whitten's plus 1.5% BSA that was previously conditioned with endometrial epithelial cell monolayer, TCM-199 containing 0.4% BSA or TCM-199 plus 0.4% BSA that was previously conditioned with endometrial epithelial cell monolayer, finally, TCM-199 containing 10% serum or TCM-199 plus 10% serum that was previously conditioned with endometrial epithelial cell monolayer. Results show that initiation of hatching was significantly enhanced by conditioning the Whitten's media.  相似文献   

2.
Porcine embryos (1-, 2- and 4-cell) were cultured in a basal medium consisting of Krebs-Ringer bicarbonate buffer supplemented with oviductal fluid and several growth factors and observed for further development. Oviducts were flushed at either 48 h (Experiment 1) or 96 h (Experiment 2) after the onset of estrus. Observations were made every 48 h (Experiment 1) or 12 h (Experiment 2) until failure of the embryos to develop for 2 consecutive observations. Embryos were scored 0 = no development, 1 = cleavage, 2 = morula, 3 = blastocyst, or 4 = hatched blastocyst. In the first experiment, development of 1-, 2- and 4-cell embryos (n=282) in the basal medium supplemented with oviductal fluid (4:1) or 3 sets of growth factors, was less or equal to one cleavage stage. Those embryos cultured in the basal medium supplemented with bovine serum albumin (fatty acid free) (BSA) advanced to the blastocyst stage. In the second experiment, 96 h aged embryos (n=142) were cultured in the basal medium supplemented with IGF-1 and - 2 and EGF, or with BSA alone or with BSA and the three growth factors. In the treatments without BSA, the embryonic development was less than one cleavage, whereas in those treatments with BSA, embryos advanced beyond hatching and began to expand. We conclude that for culture of porcine embryos, supplementation with several growth factors or with oviductal fluid, in the concentration used in this study, was of little benefit at this stage of development. However, the type of BSA significantly affected development. More than 90% of the embryos reached the morula and blastocyst stages in medium than included BSA (fatty acid free).  相似文献   

3.
The purpose of this study was to evaluate the ability of hyaluronic acid to improve the development of 1- and 2-cell porcine embryos to the blastocyst stage in a simple medium. In Experiment 1, we confirmed the ability of Whitten's medium supplemented with 15 mg/ml BSA to support the development of porcine embryos to the blastocyst stage under our experimental conditions. Embryos collected from oviducts were cultured at 38.5 degrees C in an atmosphere of 5% CO(2) in humidified air up to 6 d. After 2 d of culture, 82 and 78% of embryos reached the 4-cell stage or beyond in TCM199 supplemented with 10% fetal calf serum (FCS) and in Whitten's medium with BSA, respectively. However, no embryo developed to the morula stage in TCM199 after 6 d of culture. On the other hand, 26 and 15% of embryos developed to the morula and the blastocyst stage in Whitten's medium, respectively. In Experiment 2, we determined whether supplementation of hyaluronic acid in Whitten's medium would improve the development of porcine embryos to the blastocyst stage. After 6 d of culture, development of the embryos to the blastocyst stage was best supported in Whitten's medium with 4 mg/ml BSA and 0.5 mg/ml hyaluronic acid (70%). The proportion of degenerated embryos was lower in the presence than in the absence of hyaluronic acid. These results indicate that the supplementation of Whitten's medium with hyaluronic acid improves the development of 1- and 2-cell porcine embryos to the blastocyst stage.  相似文献   

4.
Experiment 1 compared the development of 2- to 4-cell bovine embryos cultured in synthetic oviductal fluid with 20% fetal calf serum or 3.2% BSA and in the presence of oviductal cells, cumulus cells, or medium alone. More embryos developed in medium with serum, regardless of culture method (P = 0.063). Oviductal cell co-culture resulted in more embryos developing to at least the morula stage (P /= 0.400). Addition of serum to oviductal cell co-culture medium increased the number of excellent or good quality embryos (P = 0.019). Experiment 2 further compared the development of 2-cell or 3- to 4-cell embryos co-cultured with oviductal cell suspensions in serum-supplemented synthetic oviductal fluid or M-199 medium. More 3- to 4-cell than 2-cell embryos developed to at least the morula stage (P < 0.001). More embryos developed to at least the morula stage in synthetic oviductal fluid (P = 0.083). Neither initial embryo cell stage nor medium type influenced the percentage of developing embryos that achieved the blastocyst stage or final morphological quality of embryos (P >/= 0.535).  相似文献   

5.
The effect of the oviductal environment on gene expression in 2-cell mouse embryos was examined with mRNA differential display. Embryos used for experiments were cultured in modified Whitten medium with or without oviductal tissue until late 2-cell stage. The results of sequencing indicated that the genes for ATP synthase (ATPase 6), S:-adenosylmethionine decarboxylase (S:-AMDC) and nuclear autoantigenic sperm protein (NASP) were differentially expressed in embryos cultured in the oviductal environment (nonblocking culture condition). The ATPase 6 gene is encoded by mitochondrial DNA and is essential for the production of ATP. This indicates that the expression of ATP synthesis-related genes at the 2-cell stage may be required to maintain normal development in vitro. S:-Adenosylmethionine decarboxylase decarboxylates adenosylmethionine, which is a substrate of DNA methylation. The expression of S:-AMDC may be responsible for the low level of methylation of preimplantation development. As NASP is a histone-binding protein that is thought to be testis and sperm specific, its function in embryos remains unclear. On the other hand, the Tcl1 gene and a novel gene, the c-1 gene, were strongly expressed in embryos cultured without oviductal tissue (blocking culture condition). The expression patterns of these genes are quite similar. However, the detailed functions of these genes in embryos remain to be determined.  相似文献   

6.
Oviductal and uterine embryos were collected from mares at 5 to 7 days following ovulation 1) to evaluate the effects of oviductal tissue explants on in vitro growth and development of equine embryos and 2) to study the morphologic development of equine embryos in culture. Embryos were incubated for 5 days in a medium (control group) or in medium supplemented with oviductal tissue explants (co-culture group). Embryos were evaluated and the media changed daily. Following 5 days in culture, 10 10 (100%) control embryos and 27 29 (93%) co-cultured embryos had doubled in diameter. All embryos that were recovered as morulae developed to the blastocyst stage in culture. By 5 days in culture, 6 10 (60%) control embryos and 19 29 (66%) co-cultured embryos had reached the hatching blastocyst stage of development. By 3 days in culture, significantly more (P<0.05) control embryos versus co-cultured embryos had degenerated (4 10 vs 2 29 , respectively). By 5 days in culture, significantly more (P<0.01) control embryos versus co-cultured embryos had degenerated (6 10 vs. 3 29 , respectively). Embryos cultured with oviductal tissue were sustained longer than embryos cultured in medium alone. Hatching was characterized by the blastocyst squeezing through a small opening in the zona pellucida or by the zona pellucida thinning over approximately half of the blastocyst surface and subsequently disappearing entirely.  相似文献   

7.
The regulation of trophectoderm differentiation in mouse embryos was studied by inhibiting DNA synthesis with aphidicolin, a specific inhibitor of DNA polymerase alpha. Embryos were exposed to aphidicolin (0.5 micrograms/ml) for 16 h at various preimplantation stages and scored for their ability to form a blastocyst and develop beyond the blastocyst stage. Embryos were most sensitive to aphidicolin at the late 4-cell stage and became progressively less sensitive as they developed. Aphidicolin inhibited blastocyst formation by 70%, 100%, 77%, and 24% after treatment at the 2-cell, 4-cell, noncompacted 8-cell, and compacted 8-cell stages, respectively. Although the inhibitory effect of aphidicolin on blastocyst formation decreased markedly as 8-cell embryos underwent compaction, developmental capacity beyond the blastocyst stage was poor after treatment of either noncompacted or compacted 8-cell embryos. Treatment at the morula and early blastocyst stages was less harmful to embryos than treatment at earlier stages but reduced the number of trophoblast outgrowths by interfering with hatching. Autoradiographic analysis showed that during aphidicolin treatment, incorporation of 3H-thymidine was inhibited over 90% at all stages examined, indicating an inhibition of DNA synthesis. Because inhibition of blastocyst formation by aphidicolin decreased at the compacted 8-cell stage, we suggest that approximately the first half of the fourth DNA replication cycle is critical for subsequent blastocyst formation. Furthermore, the poor further development of blastocysts formed after aphidicolin treatment of compacted 8-cell embryos suggests that the DNA replication requirements for initial trophectoderm differentiation are distinct from requirements for further development of blastocysts in vitro.  相似文献   

8.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

9.
Decades worth of research have consistently shown the adverse effects of elevated temperatures on reproductive parameters of livestock species. The objective of this study was to evaluate the developmental and apoptotic responses of porcine in vitro fertilized (IVF) and parthenogenetically activated (PA) embryos heat stressed at the late 1-cell stage. Embryos were heat stressed (HS) at 42 degrees C for 9 hr starting 22 hr after insemination or artificial activation stimulus. Non heat-stressed (NHS) control embryos were maintained at 39 degrees C for the duration of the experiments. TUNEL staining on Day 5 of development demonstrated that heat stress elicited a significant apoptotic response in IVF embryos (45.6% of HS embryos and 26.7% of NHS embryos were apoptotic; P<0.05), but not in PA embryos (51.1% and 39.9% for HS and NHS embryos, respectively; P>0.1). And, while IVF embryos were highly susceptible to heat-induced developmental perturbations (20.6% and 8.8% development to blastocyst for NHS and HS embryos, respectively; P<0.05), elevated temperatures did not affect blastocyst rates in PA embryos (22.2% for NHS PA embryos and 21.2% for HS PA embryos; P>0.1). These findings indicate that, as in other systems studied, IVF pig embryos are directly affected adversely by heat stress conditions. Parthenogenetic embryos, though, appear to be surprisingly tolerant of the elevated temperatures. The differences between IVF and PA embryos in their response to heat stress warrants further investigation.  相似文献   

10.
This study was designed to investigate the developmental competency of in vitro-matured and in vitro-fertilized bovine embryos co-cultured with a) medium alone, b) bovine oviductal cells (BOC), c) bovine conditioned medium (BCM), d) porcine oviductal cells (POC), and porcine conditioned medium (PCM). Follicular oocytes collected from cattle at local slaughterhouses were matured and fertilized in vitro. Epithelial cells were scraped from the luminal surface tissue of either bovine or porcine oviducts collected after ovulation, cultured in TALP + 10% heat-treated fetal calf serum, and the conditioned media were collected following a 3- to 5-d incubation period. After 18 to 22 h of sperm-ova co-incubation, the fertilized and/or cleaved ova were randomly assigned to 1 of 5 co-culture groups. The results revealed that the efficiency of medium alone in supporting embryo development from the 16- to 32-cell stage up to the blastocyst stage was significantly (P<0.01) lower than of embryos co-cultured with either bovine or porcine epithelial cells, or with conditioned media from such cells. Epithelial cell co-culture, regardless of cell source, was more effective (P<0.01) than culture with conditioned medium. Co-culture in medium containing or conditioned by porcine cells was more effective in supporting bovine embryo development than co-culture with bovine-derived cells or conditioned medium. These data support the concept that oviductal cells produce a soluble component which enhances embryo development to the blastocyst stage in vitro and that the effect is not species-specific.  相似文献   

11.
This study compared the in vitro development of Day-2 equine embryos co-cultured with either trophoblastic vesicles or oviductal explants. Embryos were collected surgically from the oviducts of pony mares 2 d after ovulation and assessed for stage of development. Culture medium was Ham's F12 and Dulbecco's Modified Eagle's Medium (50:50 v/v) in a humidified atmosphere of 5% CO(2) in air at 38.5 degrees C with either trophoblastic vesicles or oviductal explants. The quality score of embryos was assessed daily. After 4 d in culture, embryos were stained (Hoechst 33342) and evaluated with epifluorescence to determine the number of nuclei present. Six of seven embryos co-cultured with oviductal exmplants developed to the morula/blastocyst stage, while four of seven embryos co-cultured with trophoblastic vesicles developed to the morula stage. More (P = 0.1) embryos co-cultured with oviductal explants reached the blastocyst stage than embryos co-cultured with trophoblastic vesicles (3 7 vs 0 7 , respectively). The number of cells was higher (P = 0.1) for embryos co-cultured with oviductal explants than for embryos co-cultured with trophoblastic vesicles (162.6 +/- 32 vs 87.3 +/- 28, respectively). The number of cells for embryos co-cultured with either oviductal explants or trophoblastic vesicles appeared to be lower than for embryos matured in vivo that were recovered from the uterus at Day 6 (378, 399, >1000). The co-culture of early equine embryos in a completely defined medium with either trophoblastic vesicles or oviductal explants can support development to at least the morula stage. The co-culture of embryos with oviductal explants resulted in superior development of four-to eight-cell embryos, as indicated by the proportion that reached the blastocyst stage and by the number of cells.  相似文献   

12.
The male-specific H-Y antigen is present on mammalian cell membranes and has been identified by various methods, including antiserum cytotoxicity. The objective of the present study was to determine the sex of in vitro produced (IVP) bovine embryos, at varying stages of development, by culturing in the presence of rat monoclonal H-Y antibodies. Embryos derived from IVM/IVF were classified according to the interval after IVF (48, 96 or 120 h) as Category 1, 2 or 3 if they had 4 to 8, <32, and >32 cells, respectively. Embryos of each category were cultured for 24h in TCM-199 supplemented with bovine oviductal epithelial cells, fetal calf serum (FCS), and antibiotics (Control group), to which the following had been added: guinea pig serum (GPS; C' group); H-Y antiserum (HY group); or GPS and H-Y antiserum (C' + HY group). After culture, embryos were designated as "affected" when development was arrested or one or more blastomeres was degenerate; embryos lacking these changes were designated "unaffected." The sex of each embryo was subsequently determined by chromosome analysis. After 48h of IVF (Category 1), within each of the four treatments, the proportion of unaffected embryos was higher than the proportion of unaffected embryos (81% versus 19%, P < 0.05). Similarly, the Control, C' and HY groups of Categories 2 and 3 embryos had different proportions of unaffected versus affected embryos (75% versus 25%, P < 0.05). In all these groups, the male:female ratio did not significantly differ from 1:1. In contrast, in the C' + HY group of Categories 2 and 3 embryos, the ratio of unaffected versus affected embryos was 41% versus 59% (P < 0.05) and the male:female ratio differed (P < 0.05) from the expected 1:1 ratio (approximately 0.3:1 and 4.5:1 for unaffected versus affected, respectively). In conclusion, when bovine embryos were cultured in the presence of rat monoclonal H-Y antibodies and compliment, alterations occurred in embryos that were beyond the 8-cell stage; we inferred that the antibodies cross-reacted with H-Y antigens.  相似文献   

13.
This study was designed to determine the effect of co-culture with porcine oviductal epithelial cell (POEC) monolayers on in vitro fertilization of pig oocytes. The in vitro penetrability of mature (experiment 1) or immature (experiment 2) oocytes was studied in presence or absence of POEC during IVF with fresh semen. In experiment 3, boar and POEC effects were analyzed but in this case with frozen-thawed spermatozoa. In experiment 4, the spermatozoa were pre-incubated before IVF with or without POEC in order to assess their effect on IVF sperm-related parameters. In experiment 5, the effect of POEC was studied by co-culturing them with oocytes before IVF to determine if monospermy was improved. The results showed that high sperm concentration and POEC increase oocyte penetrability (P<0.01) and decrease monospermy rate (P<0.01), in both mature and immature oocytes (P<0.01) with fresh semen and a 18 h culture time. With frozen semen was detected a boar and POEC effect (P<0.01) on penetration rate. The sperm pre-culture 2 h with POEC also resulted in an increase of sperm penetration in terms of number of sperm per oocyte (P<0.01) and this treatment did not increase monospermy when contact time between gametes was limited to 6 h although monospermy was higher when POEC were present during IVF. Finally, exposure of oocytes to POEC for 4 h before IVF facilitated monospermic penetration to over 70% (P<0.01). In conclusion, the use of POEC in porcine IVF systems provides the possibility of working with low sperm concentrations and the effect of POEC on monospermy depends on sperm concentration, boar and contact time between gametes. Moreover, the exposure of oocytes to POEC before IVF improves the rate of monospermy.  相似文献   

14.
15.
Embryos of certain inbred mouse strains, and their F1 hybrids, are able to develop from the 1-cell to blastocyst stage in simple chemically defined media containing lactate (L), pyruvate (P) and glucose (G). The individual roles of these substrates in supporting complete preimplantation development in vitro was examined with 1-cell F2 embryos from B6CBF1 hybrid mice. Embryos collected between 26 and 27 h post hCG were cultured in medium containing L, P, LP or LPG. After 50 h in culture, the proportions developing to the morula stage were 1%, 83%, 94% and 100%, respectively. In combination, lactate and pyruvate appeared to act synergistically and both the rate and level of development to the morula stage were unaffected by the absence of glucose. After a further 46 h in culture, only the embryos grown in the presence of glucose developed into blastocysts. In LP medium, embryos arrested at the compacted morula stage late on day 3 of development. As culture continued in the absence of glucose, embryos decompacted (approximately 82 h post hCG) and subsequently degenerated. Exposure to medium containing glucose for the first, second or third 24 h period in culture was sufficient to support the morula-to-blastocyst transition. Glucose still supported this transition when embryos were transferred to LPG medium 3 h after the completion of compaction (76 h post hCG), but was ineffective 6 h later (82 h post hCG) once decompaction had commenced. We conclude that lactate and pyruvate together are able to support normal development of 1-cell F2 embryos to the morula stage in vitro, but that glucose is an essential component of the culture medium for development to the blastocyst stage.  相似文献   

16.
Jeon Y  Jeong SH  Biswas D  Jung EM  Jeung EB  Lee ES  Hyun SH 《Theriogenology》2011,76(7):1187-1196
Mammalian embryos produced in vitro show a high rate of early developmental failure. Numerous somatic cell nuclear transfer (SCNT) embryos undergo arrest and show abnormal gene expression in the early developmental stages. The purpose of this study was to analyze porcine SCNT embryo development and investigate the cause of porcine SCNT embryo arrest. The temporal cleavage pattern of porcine SCNT embryos was analyzed first, and the blastocyst origin at early developmental stage was identified. To investigate markers of arrest in the cleavage patterns of preimplantation SCNT embryos, the expression of survivin—the smallest member of the inhibitor of apoptosis (IAP) gene family, which suppresses apoptosis and regulates cell division—was compared between embryos showing normal cleavage and arrested embryos.A total of 511 SCNT embryos were used for cleavage pattern analysis. Twenty-four hours post activation (hpa), embryos were classified into five groups based on the cleavage stage as follows; 1-cell, 2-cell, 4-cell, 8-cell and fragmentation (frag). In addition, 48 hpa embryos were more strictly classified into 15 groups based on the cleavage stage of 24 hpa; 1-1 cell (24 hpa-48 hpa), 1-2 cell, 1-4 cell, 1-8 cell, 1 cell-frag, 2-2 cell, 2-4 cell, 2-8 cell, 2 cell-frag, 4-4 cell, 4-8 cell, 4 cell-frag, 8-8 cell, 8 cell-frag, and frag-frag. These groups were cultured until 7 d post activation, and were evaluated for blastocyst formation. At 24 hpa, the proportion of 2-cell stage was significantly higher (44.5%) than those in the other cleavage stages (1-cell: 13.4%; 4-cell: 17.9%; 8-cell: 10.3%; and frag: 13.9%). At 48 hpa, the proportion of embryos in the 2-4 cell stage was significantly higher (32.4%) than those in the other cleavage stages (2-8 cell: 8.2%; 4-8 cell: 12.1%; and frag-frag: 13.9%). Some embryos arrested at 48 hpa (1-1 cell: 5.8%; 2-2 cell: 2.8%; 4-4 cell: 3.8%; 8-8 cell: 6.5%; and total arrested embryos: 18.9%). Blastocyst formation rates were higher in 2-4 cell cleavage group (20.2%) than in other groups. SCNT embryos in 2-4 cell stage showed stable developmental competence. In addition, we investigated survivin expression in porcine SCNT embryos during the early developmental stages. The levels of survivin mRNA in 2-cell, 4-cell stage SCNT embryos were significantly higher than those of arrested embryos. Survivin protein expression showed a similar pattern to that of survivin mRNA. Normally cleaving embryos showed higher survivin protein expression levels than arrested embryos. These observations suggested that 2-4 cell cleaving embryos at 48 hpa have high developmental competence, and that embryonic arrest, which may be influenced by survivin expression in porcine SCNT embryos.  相似文献   

17.
目的:通过建立慢病毒载体感染猪胚胎体系实现胚胎标记,进而研究不同发育阶段猪孤雌胚胎之间的嵌合能力,为进一步研究猪早期胚胎发育以及细胞分化奠定基础.方法:首先,通过显微注射的方法把2×109I.U./ml、2×108I.U./ml和2×107I.U./ml三个梯度的表达绿色荧光的慢病毒载体分别注射到猪1-细胞胚胎和2-细胞胚胎的透明带下,进行胚胎的GFP转基因标记,在荧光显微镜下观察比较卵裂率、阳性胚胎率、囊胚率、阳性囊胚率和囊胚细胞数.然后,采用凹窝聚合法对同步发育胚胎在不同阶段(2-细胞,4-细胞,8-细胞)进行嵌合,2-细胞胚胎与不同发育阶段(2-细胞、4-细胞、8-细胞)胚胎进行嵌合以及2-细胞胚胎卵裂球互换制作嵌合体胚胎,发育到囊胚时在荧光显微镜下检测胚胎的嵌合状态.结果:2×109I.U./ml的慢病毒感染猪2-细胞胚胎组中,体外受精和孤雌胚胎感染阳性率( 80.00%、76.36%)和阳性囊胚率(90.74%、89.56%)都显著高于其它滴度组(P<0.05),另外,慢病毒感染的两种胚胎与对照组对卵裂率、囊胚率和囊胚细胞数三个指标没有显著影响(P>0.05).2-细胞胚胎之间嵌合囊胚率和2-细胞卵裂球互换嵌合囊胚率( 53.85%、62.50%)显著高于2-细胞胚胎与4-细胞胚胎的嵌合率(18.60%,P<0.05),在同步发育胚胎中8-细胞胚胎之间的嵌合率(75.00%)高于4-细胞胚胎之间和2-细胞胚胎之间的嵌合率( 65.00%、53.80%).结论:2×109I.U./ml的慢病毒感染2-细胞期胚胎效率最高,另外,慢病毒感染对猪胚胎发育没有明显影响.8-细胞间的嵌合率比较高;发育同步胚胎间的嵌合率高于发育非同步胚胎间的嵌合率.  相似文献   

18.
The susceptibility of early bovine embryos to developmental arrest ("blocking") in vitro was examined. Embryos, obtained from superovulated donors, were cultured in vitro in Ham's F10 culture medium or in vivo in sheep oviducts. Treatments were terminated on Day 7 post-donor estrus (estrus = day 0), and the embryos were evaluated for development. Experiment 1 tested whether the 8- to 16-cell block was reversible. One- to two-cell embryos were cultured in vitro to the 8-cell stage (2 d), then in vivo for 3 d; controls were cultured in vitro or in vivo for 5 d. Forty-two percent (19 45 ) of in vivo controls developed normally; none (0 55 ; 0%) of the in vitro controls cleaved past the 9- to 16-cell stage. Only 4% (2 48 ) of the embryos cultured to eight cells in vitro developed normally after culture in sheep oviducts, indicating that the block was irreversible. Irreversibility was not caused by overt cell death, since 33 33 (100%) of blocked embryos responded positively to fluorescien diacetate vital staining. Experiment 2 tested the effect of in vitro exposure at specific cell stages on subsequent in vivo development. Embryos at the 1- to 2-, 3- to 4-, 5- to 8- and 9- to 16-cell stages were assigned randomly to one of the following treatments: in vivo culture; in vitro culture; or 24 h in vitro culture, followed by in vivo culture. Subsequent in vivo development was affected by 24 h of in vitro culture (P<0.05) only in 3- to 4-cell embryos (11 41 , 27% vs 22 41 , 54% for in vivo controls). We conclude that 1) the block is a manifestation of in vitro exposure during the four- to eight-cell stage, and 2) the block, while irreversible, is not the result of overt embryonic death.  相似文献   

19.
These studies were conducted to identify the point during the 4-cell stage at which the porcine embryo begins to control development. Reproductive tracts of gilts were flushed 48 h after the onset of estrus to obtain 1- and 2-cell embryos. To determine the duration of the 4-cell stage in vitro, development of 29 embryos was timed from cleavage to the 4-cell stage and from cleavage to the 8-cell stage. The average duration of the 4-cell stage was 50.5 h. The duration of the 4-cell stage was positively correlated (p < 0.01) with culture time in vitro before cleavage to the 4-cell stage. DNA content was determined by using the Feulgen's reaction and quantified with micro-densitometry. Staining units (SU; density x area) were calculated at 0, 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, and 36 h post-cleavage to the 4-cell stage (P4C). Results revealed a possible G1 phase (< 2 h) with DNA synthesis starting within 2 h P4C. DNA synthesis was completed by 16 h P4C, and was followed by an extended G2 phase. Embryos were evaluated for uptake and incorporation of [35S]methionine and for qualitative changes in protein profiles specific to time points during the 4-cell stage (2, 10, 14, 16, 18, 24, 30, and 40 h P4C). Methionine uptake and incorporation into protein followed similar patterns, both decreasing until 16-18 h P4C, followed by a steady increase through the 4-cell stage. Protein profiles revealed qualitative changes beginning at 14 and 16 h P4C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Smith  S.  Schmidt  M.  Purwantara  B.  Greve  T. 《Acta veterinaria Scandinavica》1992,33(4):349-355
One- to 16-cell porcine embryos were cultured in either Whittens medium supplemented with bovine serum albumin and fetal calf serum (WM) or in the same medium with porcine oviduct epithelial cell co-culture (WM-Poec). All stages of embryos cultured in WM-POEC had higher cell counts after 144–168 h of development than did embryos in WM. There was however, no significant difference in blastocyst formation rate of embryos cultured in WM-POEC over those cultured in WM. A high proportion of the embryos entering culture at the 1-2-cell were able to pass the 4-cell block stage in both WM and WM-POEC, 81% and 77%, respectively. In both media, most of the 1-2-cell embryos arrested their development at the compacted morula stage and failed to blastulate while embryos initiating culture at the 4-and 8-16-cell embryos formed blastocysts in culture at a rate of 80–90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号