首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Humanized mouse models are useful tools to explore the functional and regulatory differences between human and murine orthologous genes. We have combined a bioinformatics approach and an in vivo approach to assess the functional and regulatory differences between the human and mouse ABCA1 genes. Computational analysis identified significant differences in potential regulatory sites between the human and mouse genes. The effect of these differences was assessed in vivo, using a bacterial artificial chromosome transgenic humanized ABCA1 mouse model that expresses the human gene in the absence of mouse ABCA1. Humanized mice expressed human ABCA1 protein at levels similar to wild-type mice and fully compensated for cholesterol efflux activity and lipid levels seen in ABCA1-deficient mice. Liver X receptor agonist administration resulted in significant increases in HDL values associated with parallel increases in the hepatic ABCA1 protein and mRNA levels in the humanized ABCA1 mice, as seen in the wild-type animals. Our studies indicate that despite differences in potential regulatory regions, the human ABCA1 gene is able to functionally fully compensate for the mouse gene. Our humanized ABCA1 mice can serve as a useful model system for functional analysis of the human ABCA1 gene in vivo and can be used for the generation of potential new therapeutics that target HDL metabolism.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the nonflagellated proteome of Arabidopsis from the shared proteome of the ciliated/flagellated organisms Chlamydomonas and human. We identified 688 genes that are present exclusively in organisms with flagella and basal bodies and validated these data through a series of in silico, in vitro, and in vivo studies. We then applied this resource to the study of human ciliation disorders and have identified BBS5, a novel gene for Bardet-Biedl syndrome. We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella.  相似文献   

20.
We cloned and functionally characterized the murine Bin1 gene as a first step to investigate its physiological roles in differentiation, apoptosis, and tumorigenesis. The exon-intron organization of the >/=55-kb gene is similar to that of the human gene. Consistent with a role for Bin1 in apoptosis, the promoter included a functional consensus motif for activation by NF-kappaB, an important regulator of cell death. A muscle regulatory module defined in the human promoter that includes a consensus recognition site for myoD family proteins was not conserved in the mouse promoter. However, Bin1 is upregulated in embryonic development by E10.5 in myotomes, the progenitors of skeletal muscle, supporting a role in myogenesis and suggesting that the mouse and human genes may be controlled somewhat differently during development. In C2C12 myoblasts antisense Bin1 prevents induction of the cell cycle kinase inhibitor p21WAF1, suggesting that it acts at an early time during the muscle differentiation program. Interspecific mouse backcross mapping located the Bin1 locus between Mep1b and Apc on chromosome 18. Since the human gene was mapped previously to chromosome 2q14, the location of Bin1 defines a previously unrecognized region of synteny between human chromosome 2 and mouse chromosome 18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号