首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peng J  Andersen JK 《IUBMB life》2003,55(4-5):267-271
Given the critical role that the c-Jun N-terminal kinase (JNK) pathway plays in regulating many of the cellular processes which are affected in Parkinson's disease (PD), the possible importance of JNK in disease pathogenesis is being increasingly recognized. Here we review recent findings implicating the JNK signaling pathway in animal models of Parkinson's disease and discuss the relationship between this pathway and the prominent pathological processes observed in the disease state. We suggest that regulation of the JNK signaling pathway may be a central facet in potential treatments for the disease.  相似文献   

2.
《Molecular medicine today》1998,4(10):438-444
In the past few years, the genetic contribution to Parkinson's disease (PD) has gained major attention and has resulted in the identification of the first mutant gene, called α-synuclein, involved in the pathogenesis of autosomal-dominant PD. α-Synuclein is a major component of Lewy bodies, which are a neuropathological feature of PD. Furthermore, deletions in the parkin gene have been identified as the primary cause in rare forms of autosomal-recessive juvenile PD. The elucidation of polygenic changes in the dopamine pathway, mitochondrial dysfunction, and metabolism of xenobiotics is now technically possible by means of association and genotype studies. The increasing knowledge of the pathogenesis of PD at a molecular level will have important implications for the development of individual therapeutic strategies to prevent disease progression.  相似文献   

3.
4.
Fan XN  Wang G  Chen SD 《生理科学进展》2010,41(4):272-274
自噬是一种存在于正常细胞和病态细胞中的非选择性的降解机制,其主要作用是在营养缺乏的情况下为细胞生长代谢提供必要的大分子物质和能量并清除细胞内过剩或有缺陷的细胞器。近年的研究认为自噬溶酶体途径(autophagy-lysosome pathway,ALP)参与了包括帕金森病(Parkin-son's disease,PD)在内的多种神经变性疾病的发病并在其中起关键作用。本文就ALP参与PD的发病和病理生理过程及其调节因素做一综述。  相似文献   

5.
The JNK signal transduction pathway   总被引:19,自引:0,他引:19  
The c-Jun NH(2)-terminal kinases (JNKs) are an evolutionarily conserved sub-group of mitogen-activated protein (MAP) kinases. Recent studies have improved our understanding of the physiological function of the JNK pathway. Roles of novel molecules that participate in the JNK pathway have been defined and new insight into the role of JNK in survival signaling, cell death, cancer and diabetes has been achieved.  相似文献   

6.
During the past decade, it has become apparent that a set of ostensibly unrelated neurodegenerative diseases, including Parkinson's disease and Huntington's disease, shares striking molecular and cell biology commonalities. Each of the diseases involves protein misfolding and aggregation, resulting in inclusion bodies and other aggregates within cells. These aggregates often contain ubiquitin, which is the signal for proteolysis by the 26S proteasome, and chaperone proteins that are involved in the refolding of misfolded proteins. The link between the ubiquitin-proteasome system and neurodegeneration has been strengthened by the identification of disease-causing mutations in genes coding for several ubiquitin-proteasome pathway proteins in Parkinson's disease. However, the exact molecular connections between these systems and pathogenesis remain uncertain and controversial. In this article, we summarize the state of current knowledge, focusing on important unresolved questions.  相似文献   

7.
Parkinson's disease (PD) is one of the most common movement disorders caused by the loss of dopaminergic neuronal cells. The molecular mechanisms underlying neuronal degeneration in PD remain unknown; however, it is now clear that genetic factors contribute to the pathogenesis of this disease. Approximately, 5% of patients with clinical features of PD have clear familial etiology, which show a classical recessive or dominant Mendelian mode of inheritance. Over the decade, more than 15 loci and 11 causative genes have been identified so far and many studies shed light on their implication in not only monogenic but also sporadic form of PD. Recent studies revealed that PD-associated genes play important roles in cellular functions, such as mitochondrial functions, ubiquitin-proteasomal system, autophagy-lysosomal pathway and membrane trafficking. Furthermore, the proteins encoded by PD-associated genes can interact with each other and such gene products may share a common pathway that leads to nigral degeneration. However, their precise roles in the disease and their normal functions remain poorly understood. In this study, we review recent progress in knowledge about the genes associated with familial PD.  相似文献   

8.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major component of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD, but their pathogenic mechanism is not understood. Here we show that both wild type and mutant alpha-synuclein form insoluble fibrillar aggregates with antiparallel beta-sheet structure upon incubation at physiological temperature in vitro. Importantly, aggregate formation is accelerated by both PD-linked mutations. Under the experimental conditions, the lag time for the formation of precipitable aggregates is about 280 h for the wild type protein, 180 h for the A30P mutant, and only 100 h for the A53T mutant protein. These data suggest that the formation of alpha-synuclein aggregates could be a critical step in PD pathogenesis, which is accelerated by the PD-linked mutations.  相似文献   

9.
The primary cause of Parkinson's disease is a loss of dopamine in the corpus striatum. It has been postulated that this effect leads to disinhibition of the striopallidal pathway and secondarily, to a functional shift towards glutamatergic stimulation. The aim of the present study was to find out whether inhibition of glutamatergic transmission at a level of metabotropic glutamate receptors (mGluRs) in the striatum may alleviate parkinsonian-like symptoms in rats. The non-competitive antagonist of receptor subtype 5 (mGluR5), MPEP (1.0-10 mg/kg ip), or the agonist of group II mGluRs, LY354,740 (5-10 mg/kg ip), reduced haloperidol-induced muscle rigidity and catalepsy. Intrastriatal injections of the mGluR1 antagonist, (RS) AIDA (7.5-15 microg/0.5 microl), but not of the agonist of group II mGluRs, 2R,4R-APDC (7.5-15 microg/0.5 microl), inhibited the muscle rigidity induced by haloperidol. In order to search for an influence of mGluRs on the striopallidal pathway, the effect of MPEP or of the agonist of group II mGluRs, DCG-IV, on the proenkephalin (PENK) mRNA expression in the dorso-lateral striatum was examined by an in situ hybridization. Repeated MPEP (6 x 10 mg/kg ip) administration did not influence PENK expression in na?ve rats, but diminished that increased by haloperidol. In contrast, repeated DCG-IV (3 x 1 nmol/4 microl icv) injections enhanced both the control and the haloperidol-increased levels of PENK expression. The obtained results suggest that blockade of group I mGluRs, or stimulation of group II mGluRs may be important to ameliorate parkinsonian symptoms. Striatal mGluRs may contribute to at least some of these effects.  相似文献   

10.
The JNK signal transduction pathway.   总被引:20,自引:0,他引:20  
The c-Jun NH(2)-terminal kinase (JNK) is a member of an evolutionarily conserved sub-family of mitogen-activated protein (MAP) kinases. Recent studies have led to progress towards understanding the physiological function of the JNK signaling pathway, including the analysis of the phenotype of knockout mice. An important role for JNK in the non-canonical Wnt-signaling pathway has been established. Insight into the role of scaffold proteins that may assemble functional JNK modules has been achieved. In addition, a small molecule pharmacological inhibitor of JNK has been described and it is likely that this drug will facilitate future studies of JNK function.  相似文献   

11.
Summary The aim of the study was to examine the effect of antagonists of the NMDA receptor on the parkinsonian-like muscle rigidity in rats. Reserpine and haloperidol increased the muscle resistance of the hind foot to passive movements, as well as the reflex electromyographic (EMG) activity in the gastrocnemius and tibialis anterior muscles. MK-801 (0.32-1.28 mg/kg sc), an uncompetitive antagonist of the NMDA receptor, and L-701,324 (5-40 mg/ kg ip), an antagonist of the glycine site, reduced the muscle tone and the reflex EMG activity enhanced by reserpine or haloperidol. AP-5 (2 and 5 ,g/ 0.5 pl), a competitive antagonist of the NMDA receptor, and 5,7-dichlorokynurenic acid (1.0-4.5g/0.5 pl), the glycine site antagonist injected bilaterally into the rostral striatum, inhibited the muscle rigidity induced by haloperidol. In contrast, AP-5, injected alone bilaterally into the intermediate-caudal striatum induced muscle rigidity. The present results suggest that: (1) the inhibitory effect of the NMDA receptor antagonists on the parkinsonian-like muscle rigidity depends, at least partly, on their action on the rostral striatum; (2) the blockade of NMDA receptors in the intermediate-caudal striatum may reduce the beneficial impact of these compounds.  相似文献   

12.

Background

We present a lipidomics analysis of human Parkinson''s disease tissues. We have focused on the primary visual cortex, a region that is devoid of pathological changes and Lewy bodies; and two additional regions, the amygdala and anterior cingulate cortex which contain Lewy bodies at different disease stages but do not have as severe degeneration as the substantia nigra.

Methodology/Principal Findings

Using liquid chromatography mass spectrometry lipidomics techniques for an initial screen of 200 lipid species, significant changes in 79 sphingolipid, glycerophospholipid and cholesterol species were detected in the visual cortex of Parkinson''s disease patients (n = 10) compared to controls (n = 10) as assessed by two-sided unpaired t-test (p-value <0.05). False discovery rate analysis confirmed that 73 of these 79 lipid species were significantly changed in the visual cortex (q-value <0.05). By contrast, changes in 17 and 12 lipid species were identified in the Parkinson''s disease amygdala and anterior cingulate cortex, respectively, compared to controls; none of which remained significant after false discovery rate analysis. Using gas chromatography mass spectrometry techniques, 6 out of 7 oxysterols analysed from both non-enzymatic and enzymatic pathways were also selectively increased in the Parkinson''s disease visual cortex. Many of these changes in visual cortex lipids were correlated with relevant changes in the expression of genes involved in lipid metabolism and an oxidative stress response as determined by quantitative polymerase chain reaction techniques.

Conclusions/Significance

The data indicate that changes in lipid metabolism occur in the Parkinson''s disease visual cortex in the absence of obvious pathology. This suggests that normalization of lipid metabolism and/or oxidative stress status in the visual cortex may represent a novel route for treatment of non-motor symptoms, such as visual hallucinations, that are experienced by a majority of Parkinson''s disease patients.  相似文献   

13.
目的:探讨Toll样受体4(TLR4)/P38/JNK信号通路在海马神经元凋亡中的作用及其机制,为神经退行性疾病(ND)的发病机制与防治研究提供新的实验依据。方法:采用体外培养7 d的新生大鼠海马神经元,免疫荧光双标法鉴定海马神经元纯度。用TLR4配体脂多糖(LPS)或TLR4抗体预处理海马神经元,以激活或阻断TLR4的作用。实验1设正常对照组、LPS组及TLR4抗体+ LPS组;免疫荧光法检测P-P38,P-JNK的表达。实验2分为6组:正常对照组,LPS组,TLR4抗体+ LPS组,SB202190(抑制P38) + LPS组,SP600125(抑制JNK) + LPS组,PD98059(抑制ERK) + LPS组;分别用TLR4抗体、P38、JNK及ERK的抑制剂预处理海马神经元后再给以LPS刺激24 h,Western blot法检测Bcl-2,Bax,Active-caspase-3的表达变化;流式细胞术检测海马神经元凋亡率。结果:LPS组海马神经元P-P38、P-JNK的表达明显高于正常对照组(P < 0. 01),TLR4抗体+ LPS组P-P38,P-JNK表达显著低于LPS组(P <0.01)。与正常对照组相比,LPS组海马神经元Bcl-2/Bax表达减少、Active-caspase-3表达增加,海马神经元凋亡率增加(P < 0.01)。而TLR4抗体+ LPS组、SB202190 + LPS组、SP600125 + LPS组Bcl-2/Bax显著高于LPS组、Active cas-pase-3显著低于LPS组(P < 0.01),海马神经元凋亡率显著低于LPS组(P < 0. 05,P < 0. 01)。PD98059 + LPS组与LPS组海马神经元凋亡率无明显差异。结论:①海马神经元中有TLR4介导的P38/JNK信号通路。②海马神经元TLR4激活后,P-P38、P-JNK表达增加,使Bcl-2/Bax的比例降低和Active-caspase-3表达增加,从而促进海马神经元的凋亡。海马神经元凋亡过程中有TLR4介导的P38/JNK信号通路的参与。  相似文献   

14.
This paper summarises how scaffold proteins affects and regulate the JNK signalling pathway. We believe that some of these scaffold proteins, by virtue of their anchoring and catalytic properties contribute to a high degree of specificity of intra cellular signalling pathways that regulate the progression through the cell cycle.  相似文献   

15.
16.
17.
Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64x10(-38), odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13x10(-23) to 4.90x10(-64)), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general.  相似文献   

18.
c-JunN端激酶(JNK)通路是细胞感受外界环境变化的重要途径,与细胞增殖、分化、凋亡等生命过程息息相关.活性氧(ROS)具有很高的生物学活性,可作为第二信使参与到JNK信号通之中.ROS可通过ASK1、Src激酶、GSTπ、MLK3、RIP-TRAF2复合体、MKPs等信号蛋白活化JNK,也可以充当IKK/NF-κ B、ERK等信号通路与JNK信号通路交叉时话的桥梁.另外JNK有时可出现在ROS上游,可通过促进ROS产生或聚集而发挥生物学作用.本文将对近年来ROS介导JNK信号通路网络调控的研究进展作一综述.  相似文献   

19.
The central role of the alternative complement pathway in human disease   总被引:11,自引:0,他引:11  
The complement system is increasingly recognized as important in the pathogenesis of tissue injury in vivo following immune, ischemic, or infectious insults. Within the complement system, three pathways are capable of initiating the processes that result in C3 activation: classical, alternative, and lectin. Although the roles that proinflammatory peptides and complexes generated during complement activation play in mediating disease processes have been studied extensively, the relative contributions of the three activating pathways is less well understood. Herein we examine recent evidence that the alternative complement pathway plays a key and, in most instances, obligate role in generating proinflammatory complement activation products in vivo. In addition, we discuss new concepts regarding the mechanisms by which the alternative pathway is activated in vivo, as recent clinical findings and experimental results have provided evidence that continuous active control of this pathway is necessary to prevent unintended targeting and injury to self tissues.  相似文献   

20.
Summary Parkinson's disease is a disorder, in which neurons of various neuronal systems degenerate. Furthermore, in such degenerating neurons, the cytoskeleton seems to be affected. In this respect, Parkinson's disease resembles Alzheimer's disease. Since it has been shown, that elevated levels of intracellular calcium can disrupt the cytoskeleton and that the stimulation of glutamate (NMDA) receptors can cause high intracellular concentrations of calcium, it has been suggested, that the stimulation of glutamate receptors plays a role in the slow degeneration in Alzheimer's and Parkinson's disease. In case of the degeneration of the dopaminergic nigrostriatal system in Parkinson's disease, neurons that contain calcium binding protein appear to be less vulnerable than the neurons that lack it, suggesting that calcium binding protein might protect these neurons from degeneration by preventing that cytosolic calcium concentrations increase excessively. And, since there is in the nigrostriatal system a glutamatergic afferent pathway (the prefrontonigral projection) and since dopaminergic nigrostriatal neurons contain postsynaptic NMDA receptors, glutamatergic excitation may play a role in the degeneration of the nigrostriatal system in Parkinson's disease. If so, it may be possible to protect the neurodegeneration of these dopaminergic neurons by NMDA receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号