首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arachidonic acid (AA) participates in a reacylation/deacylation cycle of membrane phospholipids, the so-called Lands cycle, that serves to keep the concentration of this free fatty acid in cells at a very low level. To manipulate the intracellular AA level in U937 phagocytes, we have used several pharmacological strategies to interfere with the Lands cycle. We used inhibitors of the AA reacylation pathway, namely thimerosal and triacsin C, which block the conversion of AA into arachidonoyl-CoA, and a CoA-independent transacylase inhibitor that blocks the movement of AA within phospholipids. In addition, we used cells overexpressing group VIA phospholipase A(2), an enzyme with key roles in controlling basal fatty acid deacylation reactions in phagocytic cells. All of these different strategies resulted in the expected increase of cellular free AA but also in the induction of cell death by apoptosis. Moreover, when used in combination with any of the aforementioned drugs, AA itself was able to induce apoptosis at doses as low as 10 muM. Blocking cyclooxygenase or lipoxygenases had no effect on the induction of apoptosis by AA. Collectively, these results indicate that free AA levels within the cells may provide an important cellular signal for the onset of apoptosis and that perturbations of the mechanisms controlling AA reacylation, and hence free AA availability, may decisively affect cell survival.  相似文献   

2.
3.
Ca2+ -independent phospholipase A2 (iPLA2) is involved in the incorporation of arachidonic acid (AA) into resting macrophages by the generation of the lysophospholipid acceptor. The role of iPLA2 in AA remodeling in different cells was evaluated by studying the Ca2+ dependency of AA uptake from the medium, the incorporation into cellular phospholipids, and the effect of the iPLA2 inhibitor bromoenol lactone on these events. Uptake and esterification of AA into phospholipids were not affected by Ca2+ depletion in human polymorphonuclear neutrophils and rat fibroblasts. The uptake was Ca2+ independent in chick embryo glial cells, but the incorporation into phospholipids was partially dependent on extracellular Ca2+. Both events were fully dependent on extra and intracellular Ca2+ in human platelets. In human polymorphonuclear neutrophils, the kinetics of incorporation in several isospecies of phospholipids was not affected by the absence of Ca2+ at short times (<30 min). The involvement of iPLA2 in the incorporation of AA from the medium was confirmed by the selective inhibition of this enzyme with bromoenol lactone, which reduced < or =50% of the incorporation of AA into phospholipids of human neutrophils. These data provide evidence that suggests iPLA2 plays a major role in regulating AA turnover in different cell types.  相似文献   

4.
《Insect Biochemistry》1991,21(7):809-814
The fatty acid compositions were determined for total lipids, triacylglycerols, phospholipids and four phospholipid fractions, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine/phosphatidylinositol (PS/PI) and cardiolipin (CA) obtained from hemocytes and cell-free serum from second day, fifth instar larvae of the tobacco hornworm Manduca sexta and the standard Manduca rearing medium. The hemocyte fatty acid profiles were considerably different from the profiles of the medium the insects were reared on and from the profiles of the cell-free serum. Hemocyte neutral lipids had lower proportions of polyunsaturated fatty acids than phospholipids. The fatty acid profiles of PC, PE, PS/PI and CA differ from each other and from the total lipid profiles, indicating selective fatty acid incorporation into hemocyte phospholipid species. Studies with radioactive arachidonic acid similarly indicated selective incorporation of polyunsaturated fatty acids into hemocyte lipids. Under our in vitro conditions, >40% of the total radioactivity was incorporated into hemocyte lipids. About 93% of the incorporated radioactivity was found in phospholipids. Within phospholipids. most of the radioactivity was associated with PC (46%), and less with PE (28%) and PS/PI (21%). Very little radioactivity was recovered in CA (0.9%).  相似文献   

5.
We have shown that phorbol myristate acetate (PMA) enhanced A-23187-induced arachidonate release and thromboxane synthesis in human platelets (Mobley, A., and Tai, H. H. (1985) Biochem. Biophys. Res. Commun. 130, 717-723). The mechanism of enhancement by PMA was not elucidated. In the present study, we have shown that PMA-treated platelets exhibited significantly less [1-14C]arachidonate incorporation than did control platelets. However, no significant change in uptake of labeled linoleate or oleate was observed by PMA treatment. Examination of the two enzyme activities involved in arachidonate incorporation into phospholipids indicated that both arachidonoyl-coenzyme A (CoA) synthase and arachidonoyl-CoA lysophosphatide acyltransferase were inactivated following treatment with PMA or 1-oleoyl-2-acetyl glycerol. When platelets were stimulated with A-23187 plus PMA which produced a significant synergism in thromboxane synthesis, both enzyme activities were substantially less than those in platelets treated with A-23187 alone. In addition to PMA and 1-oleoyl-2-acetyl glycerol induced decreases in both enzyme activities, collagen, a platelet agonist which can activate protein kinase C (Ca2+/phospholipid-dependent enzyme), was also found to cause a concentration-dependent attenuation of both enzyme activities. These results suggest that protein kinase C activation induced by PMA or collagen may cause inactivation of both arachidonoyl-CoA synthase and arachidonoyl-CoA lysophosphatide acyltransferase resulting in inhibition of the reincorporation of arachidonate released by A-23187 and, consequently, greater availability of arachidonate for thromboxane synthesis.  相似文献   

6.
Activators of protein kinase C, such as tumor-promoting phorbol esters (e.g., phorbol myristate acetate), mezerein, (-)-indolactam V and 1-oleoyl 2-acetoyl glycerol, potentiate arachidonic acid release caused by elevation of intracellular Ca2+ with ionophores. This action of protein kinase C-activators required protein phosphorylation, and was attributed to enhanced hydrolysis of phospholipids by phospholipase A2 (Halenda, et al. (1989) Biochemistry 28, 7356-7363). Recently Fuse et al. ((1989) J. Biol. Chem 264, 3890-3895) reported that the apparent enhanced release of arachidonate was actually due to inhibition of the processes of re-uptake and re-esterification of released arachidonic acid. They attributed this to loss of arachidonyl-CoA synthetase and arachidonyl-CoA lysophosphatide acyltransferase activities, which were measured in membranes obtained from phorbol myristate acetate-treated platelets. In this paper, we show that phorbol myristate acetate, at concentrations that strongly potentiate arachidonic acid release, does not inhibit either arachidonic acid uptake into platelets or its incorporation into specific phospholipids. Furthermore, the fatty acid 8,11,14-eicosatrienoic acid, a competitive substrate for arachidonyl-CoA synthetase, totally blocks arachidonic acid uptake into platelets, but, unlike phorbol myristate acetate, does not potentiate arachidonic acid release by Ca2+ ionophores. We conclude that the action of phorbol myristate acetate is to promote the process of arachidonic acid release by phospholipase A2.  相似文献   

7.
The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF, PGE2, PGD2, 6-keto-PGF and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 = 8.3 NM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 μM), indomethacin (1 μM) and NDGA (IC50 = 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.  相似文献   

8.
The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina in vitro has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF2 alpha, PGE2, PGD2, 6-keto-PGF1 alpha and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 = 8.3 nM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 microM), indomethacin (1 microM) and NDGA (IC50 = 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.  相似文献   

9.
We infused A23187, a calcium ionophore, into the pulmonary circulation of dextran-salt-perfused isolated rabbit lungs to release endogenous arachidonic acid. This led to elevations in pulmonary arterial pressure and to pulmonary edema as measured by extravascular wet-to-dry weight ratios. The increase in pressure and edema was prevented by indomethacin, a cyclooxygenase enzyme inhibitor, and by 1-benzylimidazole, a selective inhibitor of thromboxane (Tx) A2 synthesis. Transvascular flux of 125I-albumin from vascular to extravascular spaces of the lung was not elevated by A23187 but was elevated by infusion of oleic acid, an agent known to produce permeability pulmonary edema. We confirmed that A23187 leads to elevations in cyclooxygenase products and that indomethacin and 1-benzylimidazole inhibit synthesis of all cyclooxygenase products and TxA2, respectively, by measuring perfusate levels of prostaglandin (PG) I2 as 6-ketoprostaglandin F1 alpha, PGE2, and PGF2 alpha and TxA2 as TxB2. We conclude that release of endogenous pulmonary arachidonic acid can lead to pulmonary edema from conversion of such arachidonic acid to cyclooxygenase products, most notably TxA2. This edema was most likely from a net hydrostatic accumulation of extravascular lung water with an unchanged permeability of the vascular space, since an index of permeability-surface area product (i.e., transvascular albumin flux) was not increased.  相似文献   

10.
[14C]Arachidonic acid was converted to several lipoxygenase products by homogenates of human fetal tissues as determined by thin-layer chromatography. The net conversions of [14C]arachidonic acid to radiolabeled lipoxygenase products were high (greater than or equal to 5%) in the case of fetal liver and brain, and low (less than or equal to 2%) in the case of fetal adrenal, heart, and kidney.  相似文献   

11.
Endogenous opioid peptides and opiate drugs are known to affect the development of the nervous system. beta-Casomorphins (beta-CMs) belong to a family of exogenous opioid peptides derived from the milk protein beta-casein by proteolytic fragmentation. We investigated the effects of various fragments and analogues of beta-CM on neurite outgrowth in Neuro-2a mouse neuroblastoma cells. The fragments beta-CM-5 to -9 and beta-CM-5 amide stimulated neurite outgrowth. Fragments shorter than beta-CM-5 (beta-CM-3, -4, and beta-CM-4 amide) and longer than beta-CM-9 (beta-CM-13 and -21) had no effects. The activity of beta-CMs to promote neurite outgrowth does not correlate with their opioid activity in guinea-pig ileum. The effect of the most potent fragment, beta-CM-5, was prevented by the micro-opioid receptor-selective antagonist D-Phe-Cys(2)-Tyr(3)-D-Trp-Orn(5)-Thr(6)-Pen(7)-Thr(8)-NH(2) (CTOP), or by pretreatment with pertussis toxin. These results suggest that the stimulatory effects of beta-CMs on neurite outgrowth were mediated through G protein-coupled micro-opioid receptors.  相似文献   

12.
Despite the marked differences in their physiological roles, the structures and catalytic functions of the cyclooxygenase isozymes COX-1 and -2 are virtually identical. Nevertheless, a handful of amino acid substitutions give rise to subtle differences in ligand binding between the two isoforms. These 'small' alterations of isozyme structure are sufficient to allow the design of new, isoform-selective drugs.  相似文献   

13.
This study characterizes free fatty acid release in a neuroblastoma cell line (Neuro-2A), a potential model system for the study of factors that control phospholipase A2 in neurons. Two compounds, bicuculline (an antagonist at -aminobutyric acid receptors), and A23187 (a Ca2+ ionophore), were examined. The release of endogenous fatty acids and the turnover of radiolabeled arachidonic and docosahexaenoic acids were measured. The cells actively incorporated radiolabeled fatty acids into various glycerolipid pools. Both endogenous fatty acids and radiolabeled fatty acids were released from glycerolipids in a time-dependent manner. Phosphatidylcholine was a major source of released fatty acids. Release of free fatty acids was markedly stimulated by both bicuculline and A23187. We conclude that the Neuro-2A cell contain phospholipase activity that is sensitive to Ca2+ ionophore and bicuculline, and may provide a good system for further studies on the regulation of phospholipase A2 in neurons.Abbteviations 160 palmitic acid - 180 stearic acid - 181 oleic acid - 182 linoleic acid - 183 linolenic acid - 204 arachidonic acid - 226 docosahexaenoic acid - DG diacylglycerol - FAME fatty acid methyl ester - FFA free fatty acid - GABA -aminobutyric acid - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - TG triacylglycerol  相似文献   

14.
Mouse keratinocytes cultured in a medium containing less than 0.1 mM Ca2+ (low Ca2+) incorporated [1-14C]arachidonic acid (AA) into phospholipids by kinetics including; (i) a rapid labelling of phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) and both acid-stable and alkenylacyl forms of phosphatidylcholine (PtdCho); and (ii) a slow but long-lasting radiolabel incorporation into both acid-stable and alkenylacyl forms of phosphatidylethanolamine (PtdEtn), partly associated with a net radioactivity loss from acid stable-PtdCho. Under low Ca2+ conditions no radioactivity transfer apparently occurred between PtdIns and other phospholipid classes. When cells were prelabelled for 24 h with [1-14C]AA and reincubated in label-free medium containing 1.2 mM Ca2+ (normal Ca2+), an early and extensive loss of radioactivity from PtdIns was observed, reasonably in connection with Ca2+ stimulation of phosphoinositide turnover. Cell shift to normal Ca2+ did not result in an increased synthesis of labelled eicosanoids, but was consistent with an increase of radioactivity incorporation into diacylglycerol (DAG) and with a complex pattern of [1-14C]AA redistribution, eventually leading to a marked radioactivity incorporation into acid stable-PtdEtn (but not into alkenylacyl-PtdEtn) and to a labelling decrease of acid stable-PtdCho. The possible mechanisms driving AA recycling after cell shift to normal Ca2+ are discussed.  相似文献   

15.
16.
The origin of arachidonic acid (AA) found in the epidermis is not known. Two possibilities exist: either de novo synthesis within the epidermal keratinocyte, or transport of AA formed at distant tissue sites. The current study examined the ability of cultured murine and human keratinocytes to metabolize exogenously added linoleic acid (LA). Conversion of radiolabeled substrate (14C-LA) into 18:3(n-6), 20:2(n-6), 20:3(n-6), and 20:4(n-6) (AA) was noted. The conversion of non-radiolabeled 18:3(n-6) or 20:2(n-6) was also examined and the pattern of metabolites synthesized suggests that the preferred metabolic pathway for conversion of linoleic acid into arachidonic acid is via the classically described pathway in which a delta 6 desaturase constitutes the initial reaction. Although cultured skin fibroblasts are known to convert linoleic acid into arachidonic acid, the current study demonstrates that cultured epidermal keratinocytes can also avidly metabolize exogenous linoleic acid. The ability of cultured keratinocytes, and not of whole epidermis in vivo, to convert linoleic acid into arachidonic acid suggests that specific enzymatic activities may be induced by the tissue culture system itself. Hence, findings of metabolic capabilities in cultured cells may not necessarily be extrapolated to the in vivo situation.  相似文献   

17.
In an effort to obtain information on the possible source of prostaglandins which have been shown to play an important role in oviposition we examined the metabolism of arachidonic acid in microsomal preparations of both the muscular and the glandular tissue of the hen uterus. We found that adrenaline and tryptophan (but not hydroquinone) were effective stimulators of prostanoid synthesis. On incubation with [3H]arachidonic acid we identified, using TLC radiochromatography and several solvent systems, prostaglandins F2 alpha and E2 and, predominantly, thromboxane B2 which could not be attributed to platelet contamination. Addition of reduced glutathione increased prostaglandin E2 formation at the expense of thromboxane B2 and at 1 mM concentration suppressed adrenaline-promoted prostanoid synthesis. While the former effect has been documented in many other systems and could be ascribed to the activation of prostaglandin H2 to prostaglandin E2 isomerase, the latter effect is postulated to be due to an inhibition of cyclooxygenase. Interestingly, this inhibitory effect was shared by a number of reducing agents. Although the subcellular preparations were derived from structurally and functionally different tissues, there was no qualitative difference with respect to prostanoid synthesis. Our data support the role of locally produced primary prostaglandins in the regulation of oviposition and raise the question of a potential role for thromboxane in this process.  相似文献   

18.
Rat erythrocyte phosphatidylethanolamine (PE) consists of 60% alkenylacyl, 5% alkylacyl and 35% diacyl types. The fatty acid at the 2-position of these types is mainly composed of arachidonic acid. When intact rat erythrocytes were incubated with exogenous arachidonic acid, about 90% of the arachidonic acid incorporated into the PE fraction was found in the 2-position of the diacyl type. The rates of incorporation of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE were 78, 134 and 1360 pmol/h per mumol of the corresponding PE, respectively. The substrate specificities of endogenous phospholipase A2 and acyl-CoA:lysophospholipid acyltransferase were observed. DiacylPE was hydrolysed rapidly by endogenous phospholipase A2, while alkenylacyl- and alkylacylPE were poor substrates for the enzyme. The selective transfer of arachidonic acid into the 2-position of 1-acyl-lysoPE was observed. 1-Alkenyl- and 1-alkyl-lysoPE were also poor substrates for acyl-CoA:lysophospholipid acyltransferase. The acyltransferase activities with the lysoPE analogues were higher than the phospholipase A2 activities with PE analogues. These results suggest that the different incorporation rates of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE are based on the substrate specificity of endogenous phospholipase A2.  相似文献   

19.
20.
Hamsters were injected intraperitoneally with [14C]mannose, [14C]retinol and [3H]mevalonic acid. The livers were removed, extracted with chloroform-methanol and the lipids chromatographed on DEAE-cellulose and silicic acid. The hamster liver lipid contained a component which could be labelled with mannose and mevalonic acid. The properties of this compound were in accord with it being dolichyl-mannosyl-phosphate, a possible lipid intermediate required for the biosynthesis of some glycoproteins. [14C]Retinol and [14C] mannose were incorporated into another phospholipid which was labile to mild alkali conditions commonly used for the preparation of dolichyl-mannosyl-phosphate. The retinol labelled compound had similar properties to in vitro prepared mannosyl-retinyl-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号