首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The energy requirements for mitochondrial protein synthesis were investigated in isolated rat liver mitochondria. Controlled changes in coupling efficiency were obtained by titration with FCCP in the presence of various substrates. No relationship was observed between the efficiency of oxidative phosphorylation and the inhibition of protein synthesis. With succinate-ADP as the substrate the ADP:O ratio was decreased by 70–80% with no effect on protein synthesis. In contrast, with acetate-ADP as substrate, a 10–20% reduction in the ADP:O ratio gave complete inhibition of protein synthesis. The data suggest that the rate of ATP production is more important for maintenance of protein synthesis than the efficiency of coupling per se. Thus, certain substrates can support maximal rates of protein synthesis even in relatively poorly coupled mitochondria. Analysis of mitochondrial translation products formed in the presence of increasing FCCP concentrations also showed that decreased efficiency of oxidative phosphorylation had no influence on the nature of the products.  相似文献   

2.
3.
We have found that NADPH-dependent lipid peroxidation in bovine adrenal cortex mitochondria is strongly inhibited by paraquat. The site of the inhibition of the lipid peroxidation by paraquat has been examined. Paraquat neither inhibits NADPH-2,6-dichlorophenolindophenol nor NADPH-cytochrome c reductase activities. However, paraquat is able to retard the rate of reduction of cytochrome P-450 by NADPH. The spectrophotometric measurements provide the first evidence that lipid peroxidation in adrenal cortex mitochondria involves cytochrome P-450 and that the inhibitory effect of paraquat on lipid peroxidation is due to reoxidation of reduced cytochrome P-450 by the reagent.  相似文献   

4.
The relationship between the degradation reaction of cytochrome P-450 and lipid peroxidation was studied utilizing bovine adrenal cortex mitochondria. The two reactions were found to be closely correlated in terms of their response to storage of the mitochondrial preparation, stimulation by Fe2+, inhibition by EDTA and their initiation by cumene hydroperoxide. Both reactions were also found not to be inhibited by catalase, superoxide dismutase, 1,4-diazabicyclo-(2,2,2)-octane and alcohols, indicating that H2O2, superoxide, singlet oxygen and hydroxyl radicals do not participate in these reactions. Yet, diphenylamine proved to be a powerful inhibitor for both reactions, suggesting the involvement of a radical species. Cumene hydroperoxide could induce these two reactions at below 0.1 mM concentrations in the presence of molecular oxygen. The chemiluminescence observed during the Fe2+-mediated lipid peroxidation reaction which was not inhibited by either superoxide dismutase or 1,4-diazabicyclo-(2,2,2)-octane, was biphasic: one was a rapid burst; and the other was a slowly increasing emission. The latter portion of the emission of light coincided with the formation of malondialdehyde. These results indicate that in adrenal cortex mitochondria the degradation of cytochrome P-450 is closely related to lipid peroxidation.  相似文献   

5.
6.
The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.Abbreviations BAT Brown Adipose Tissue - MDA malondialdehyde  相似文献   

7.
8.
Spectroscopic analysis of the interaction of the epimeric 20-hydroperoxy derivatives of cholesterol with bovine adrenocortical cytochrome P-450scc preparations suggested the formation of a transient species. The intermediate was detected at 4 degrees C and characterized by a minimum at 412 nm in the difference spectrum.  相似文献   

9.
The mitochondrial and microsomal cytochrome P-450 contents of C57B16 mouse testis have been measured using difference spectroscopy on stable enzyme preparations containing the ferrous-carbon monoxide complex. Results were obtained on control animals (52 ± 3 days of age) and on animals injected subcutaneously with human choriogonadotropin (0.017 μg/g body weight 24 h prior to sacrifice). The high ratio of testicular mitochondrial cytochrome oxidase to P-450, which has previously precluded measurements of basal P-450 levels, was overcome by using N,N,N′,N′-tetramethyl-p-phenylene diamine to bypass site II, in combination with antimycin A to prevent reverse electron flow. The basal levels of mitochondrial and microsomal P-450 in mouse testis were 37.9 ± 3.5 and 28.9 ± 1.6 pmol/mg protein, respectively. Following administration of a desensitizing dose of gonadotropin, the respective values were lowered to 19.9 ± 1.4 and 19.6 ± 2.1 pmol/mg protein in 24 h. This is the first report of a gonadotropin-mediated decrease in mitochondrial P-450 and thus demonstrates that desensitization leads to alterations in both microsomal and mitochondrial P-450 in mouse testis.  相似文献   

10.
Cytochrome P450c17 (CYP17, 17α-hydroxylase/17, 20-lyase) plays a critical role in the production of androgens and estrogens in vertebrates. We isolated the full length cDNAs of P450c17-I and P450c17-II from Sebastes schlegeli. The cDNA sequences of P450c17-I and P450c17-II encoded 515 and 533 amino acid residues respectively. The putative P450c17-I and P450c17-II enzymes of Korean rockfish share high sequence identity with that of Japanese flounder (92% and 81%) respectively. Our current study describes that P450c17s of Korean rockfish are mainly expressed in gonads, head kidney and kidney by RT-PCR. Quantitative real-time PCR showed that the expression patterns of Korean rockfish P450c17s were developmental stage-dependency. In addition, the testosterone (T) and gonadosomatic index (GSI) levels further support the important role of P450c17-I during shift in steroidogenesis. Taken together, this study provides information about the Korean rockfish P450c17s characterization and mRNA expression as such helps in further understanding of its function in gonadal development.  相似文献   

11.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号