首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Jeppesen  E.  Søndergaard  M.  Mortensen  E.  Kristensen  P.  Riemann  B.  Jensen  H. J.  Müller  J. P.  Sortkjær  O.  Jensen  J. P.  Christoffersen  K.  Bosselmann  S.  Dall  E. 《Hydrobiologia》1990,200(1):205-218
The use of fish manipulation as a tool for lake restoration in eutrophic lakes has been investigated since 1986 in three shallow, eutrophic Danish lakes. The lakes differ with respect to nutrient loading and nutrient levels (130–1000 μg P l−1, 1–6 mg N l−1). A 50% removal of planktivorous fish in the less eutrophic cyanobacteria-diatom dominated Lake V?ng caused marked changes in lower trophic levels, phosphorus concentration and transparency. Only minor changes occurred after a 78% removal of planktivorous fish in eutrophic cyanobacteria dominated Frederiksborg Castle Lake. In the hypertrophic, green algae dominated Lake S?byg?rd a low recruitment of all fish species and a 16% removal of fish biomass created substantial changes in trophic structure, but no decrease in phosphorus concentration. The different response pattern is interpreted as (1) a difference in density and persistence of bloomforming cyanobacteria caused by between-lake variations in nutrient levels and probably also mixing- and flushing rates, (2) a difference in specific loss rates through sedimentation of the algal community prevaling after the fish manipulation, (3) a decreased impact of planktivorous fish with increasing mean depth and (4) a lake specific difference in ability to create a self-increasing reduction in the phosphorus level in the lake water. This in turn seems related to the phosphorus loading.  相似文献   

2.
Lake Timsah is considered as the biggest water body at Ismailia City with a surface area of 14?km2. It is a saline shallow water basin lies approximately mid-way between the south city of Suez and the north city of Port Said at 30o35′46.55“N and 32o19′30.54″E. Because it receives water with high and low salinities, salinity stratification is producing in the Lake Timsah, with values of 14–40‰ for the surface water and over 40‰ for the bottom water. The temperature of the lake water decreased to below 19 °C in the winter and rose to above 29?°C in the summer; the concentration of dissolved oxygen ranged between 6.5 and 12.2?l?1 and the pH fluctuated between 7.9 in its lower value and 8.2 in its higher value. Water transparency was very low as indicated by Secchi disc readings recorded during this study and varied between 0.3 and 2.7?m. The main chemical nutrient (phosphorus) reached its highest levels of 96?µg?l?1 in winter and their lowest values of 24?µg?l?1 during summer. This nutrient concentration is high especially by comparing with those of unpolluted marine waters, but is typical of the more eutrophic coastal waters worldwide. The composition and abundance of phytoplankton with dominancy of diatoms and increased population density (20,986 cell l?1) reflect the eutrophic condition of the lake. The intensive growth of phytoplankton was enriched by high concentration of chlorophyll a with annual values ranged between 6.5 and 56?µg?l?1. The objective of the present work was quantitative assessment of the quality of the water of the Lake Timsah using different approaches. During the present study, three different approaches were applied for the quantitative assessment of Lake Timsah water quality: the trophic state index (TST); trophic level index (TLI) and water quality index (WQI). Application of the trophic state and trophic level indices (TSI & TLI) revealed that the Lake Timsah has trophic indices of 60 and 5.2 for TSI and TLI, respectively. Both indices reflected the eutrophic condition of the lake waters and confirmed that the eutrophication is a major threat in the Lake Timsah. On the other hand, the WQI calculated for the Lake Timsah during the present study with an average of 49 demonstrated that the water of the Lake Timsah is bad and unsuitable for main and/or several uses. Moreover, WQI allows accounting for several water resource uses and can serve a more robust than TSI and/or TLI and can be used effectively as a comprehensive tool for water quality quantification. In conclusion, the three subjective indices used for the assessment process for the lake water are more suitable and effective for needs of the sustainable water resources protection and management of the Lake Timsah.  相似文献   

3.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

4.
A baseline study on a temperate, oligotrophic North Patagonian lake (Lake Chapo, Southern Chile) was made prior to the installation of a hydroelectric power station. Throughout one year (September 1986–October 1987) the physical and chemical properties of the lake were investigated monthly from the surface to a depth of 40 m. Lake Chapo is a deep, transparent (Secchi depth: 17–25 m), glacial lake located at 41°?27.5′?S and 72°?30′?W. It has a maximum depth of 298 m, mean depth of 183 m, surface area of 45.3 km2 and water volume of 8.296 km3. The theoretical residence time of the water was 5.5 years. The temperature regime is monomictic with the mixed temperature between 8.1–8.8?°C. Maximum temperature at the surface was 18.7?°C during thermal stratification in summer when the epilimnion had a thickness of about 20 m. The conductivity was low (20.3–23.8 μS cm?1) as was the buffering capacity of a predominantly CO2-carbonate system. The predominant cations were Ca+2¿ Na+¿Mg+2¿K+. The phosphorous and nitrogen contents were very low (soluble reactive ortophosphate: 0–1.5 μg P l?1, total phosphorus: 0.3–4 μg P l?1 and nitrate: 0–35 μg N l?1), which is typical of North Patagonian lakes.  相似文献   

5.
Lake Varese (northern Italy) has shown deterioration in water quality since the 1960s and, as a result of the long duration of direct discharge of untreated sewage into the lake, it was classified as being hypertrophic. To recover the lake water quality, a series of externally and internally remedial actions were implemented in subsequent years. The applied sewage collecting system induced a reduction of the external P loads from 50 t P year−1 to 16t P year−1 and the weighted mean annual TP concentration decreased from 352 μg P l−1 to 85 μg P l−1, typical of eutrophic conditions. The hypolimnetic water withdrawals, adopted in the years 2000–2003, allowed a reduction of the internal P loads of about 3–5 t P. In the same years, 500t O2 were injected at depths of 4.5–8 m during the summer months. In spite of these internal remedial actions, no significant reduction of the weighted mean annual concentration of the TP could be observed, and during the summer stratification period no significant reduction of the volumes of anoxic water and of the duration of the anoxia were detected. The anoxic conditions are still the prevailing force driving the lake P-budget, maintaining the lake in eutrophic status.  相似文献   

6.
Gunnar Halvorsen 《Hydrobiologia》2004,521(1-3):129-140
The physical and chemical characteristics of the dimictic, ultraoligotrophic, and subalpine Lake Atnsjøen are described based on data from the period 1985–2001. The temperature stratification of the lake is weakly developed, with the thermocline at about 10 m depth. The surface temperature during summer is usually lower than 14–15?°C. The Secchi disk transparency is normally higher than 8–10 m in summer and autumn, but can be as low as 4.3 m during spring. The pH is about 6.0, and the specific conductivity about 1.0 mS m? 1. The dominating cation and anion are Ca (≈0.8 mg l?1 or 42 μeq l?1), and SO4 (≈1.5 mg l?1 or 33 μeq l?1), respectively. The concentration of bicarbonate (HCO3, μeq l?1) is sometimes lower, sometimes higher than that of SO4.  相似文献   

7.
The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria’s. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315–7376?ind. l?1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll-a measurements of 0.35–0.96?µg?l?1 there are more indicative of little algal biomass and lower biological productivity. At 0.76–2.3?µg?l?1, meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13?m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.  相似文献   

8.
SUMMARY 1. Following fish removal, the water quality in biomanipulated lakes often improves concomitant with decreased phosphorus (P) levels. Because the decrease in P concentrations derives most probably either directly or indirectly from fish, which are the main target of biomanipulation, this study examined the P release of 0+, 1+ and 2+ roach [Rutilus rutilus (L.)] and changes in the P release during summer in a shallow eutrophic lake in Finland. 2. The P release was separated into P derived from benthic and littoral food items and into recycled P derived from feeding on zooplankton, to estimate the contribution of net P additions to the water column by the fish to the increase in P concentrations of the lake water (75–110 mg P m?3) in summer 1991–96. 3. Individual P release of roach by both egestion and excretion was estimated with a bioenergetics model. The size of the roach population was estimated with a depletion method and the proportions of different age groups from catch samples, using a programme separating mixtures of normal distributions. The sensitivity of the release estimates to variation in the growth data was estimated with the jackknife technique. 4. The biomass‐specific P release by 0+ roach (0.36–0.54 mg P g?1 day?1) was higher than that by older roach (0.07–0.16 mg P g?1 day?1) throughout the summer. The P release by the whole roach population deriving from benthic and littoral food items (0.7–2.7 mg m?3 during July to August, representing a net addition to the water column) was 5–19 times lower in 1991–96 than the recycled P release deriving from zooplankton (8.9–25.7 mg m?3), and too low to explain the increase in the P concentration of the lake water during the summer. Because the biomass‐specific P release and roach diet composition vary with fish age, it is important to consider the age structure of fish populations to obtain correct estimates of P release and net additions to the water column. 5. The removal of roach by fishing diminished the roach stock greatly, but the fish‐mediated P release to the water column changed little. This effect was because of the high compensation capacity of the roach population, leading to high recruitment of young fish with higher biomass‐specific P release rates. 6. External loading is very low during summer months and therefore it cannot explain the increase in the P concentration of water during that time. Internal loading from the sediment might be as high as 10.2 mg P m?2 day?1, i.e. 50 times higher than the maximum net P addition by the total roach population.  相似文献   

9.
SUMMARY. 1. Total seston, and invertebrate drift were studied before and after lime addition to Fyllean River, a stream-iake system in Halland county, southwest Sweden, with poorly buffered waters undergoing acidification. 2. The largest effect of liming was on the chemistry of the water. Following liming with 23 mg CaCO3 l?1 the pH of the water changed from 5.8 to 6.8 and alkalinity from 0.04 to 0.13 meq l?1.Turbidity increased from 3.4 to 4.7 JTU with no change in colour. 3. Dissolved organic carbon (DOC) concentration of all samples was in the range 10.7–13.3 mg C l?1 with no significant change occurring due to liming. 4. Total seston increased from 4.35 mg DM 1?1 in unlimed conditions to 6.25 mg DM l?1 after lime addition. All significant changes in seston occurred in the smaller size fraction (0.45–25 μm). 5. Liming reduced the organic content of the partieulate material from an average of 61% to 39% immediately downstream of a lime silo (within 1 km) but had little effect when the river course was interrupted by lakes and impoundments. 6. The lakes in the river system had a larger effect on seston concentration than any effect of the lime addition by itself. Particle concentrations were reduced by 50–55% and DOC by about 1 mg C l?1as the water passed through the lakes. 7. Macroinvertebrate drift density was low in all samples before and after liming and typical of oligotrophic streams. Drift was significantly lower at limed (0.024 ind. m?3) than at unlimed (0.083 ind. m?3) locations. The decrease was only in total drift density with no significant change in the relative abundance of functional groups or in densities of single taxa, except for a reduction in drift of predators in the limed condition.  相似文献   

10.
Danilov  Roman A.  Ekelund  Nils G. A. 《Hydrobiologia》2001,444(1-3):203-212
Impacts of solar radiation, humic substances and nutrients on phytoplankton abundance at different depths were investigated in a temperate dimictic lake, Lake Solumsjö. Penetration of solar radiation profiles at different depths, represented as light attenuation coefficient (K d) were examined. Water sampling and downward irradiance of photosynthetically active radiation (PAR), ultraviolet-A (UV-A, 320–400 nm) and ultraviolet-B (UV-B, 280–320 nm) radiation were performed once a week and at three different times of the day (08.00, 12.00 and 16.00 hrs, local time) between September 13 and November 1, 1999. During the period of investigation, solar radiation above the water surface declined from 474 to 94 mol m–2 s–1 for PAR, from 1380 to 3.57 W m–2 for UV-A and from 13.1 to 0.026 W m–2 for UV-B, respectively. The attenuation coefficient (K d) for UV-B radiation ranged from 3.7 to 31 m–1 and UV-B radiation could not be detected at depths greater than 0.25 m. Humic substances measured at 440 nm ranged from 35.5 to 57.7 Pt mg l–1. Mean values of biomass, estimated from chlorophyll a, in the whole water column (0–10 m) varied between 2.3 and 5.6 g l–1 and a diel fluctuation was observed. During stratified conditions, high levels of iron (1.36 mg l–1) and manganese (4.32 mg l–1) were recorded in the hypolimnion, suggesting that the thermocline played a major role in the vertical distribution of phytoplankton communities in Lake Solumsjö. The high levels of iron and manganese stimulated the growth of Trachelomonas volvocinopsis in the hypolimnion at a depth of 10 m. Negative impacts of UV-B radiation on phytoplankton in lake Solumsjö are reduced due to the high levels of humic substances and the high degree of solar zenith angle at the latitude studied.  相似文献   

11.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

12.
Bacterial growth and grazing mortality were estimated from Mayto October in two south Swedish oligotrophic lakes, one beinga clearwater lake (water colour 5–10 mg Pt l–1 DOC2.9–3.4 mg l–1, Secchi disk depth 5.0–9.4m) and the other a humic, brownwater lake (water colour 105–165mg Pt l–1, DOC 13.7–22.7mg l–1, Secchi diskdepth 1.3–2.1 m). Specific rates of growth and grazingmortality were generally similar for both lakes. However, theabundance of bacteria was consistently 2–3 times higherin the water of the humic lake, suggesting that the total productionand consumption of bacterial cells were also higher than inthe dearwater lake. The ratio of bacterial secondary productionto primary production was higher in the humic lake than in theclearwater lake, indicating that the bacterioplankton of thehumic lake utilize allochthonous substrates, in addition tosubstrates originating from autochthonous primary production.Most of the bacterial loss in both lakes could be attributedto small protozoan grazers. This implies that allochthonousand autochthonous organic carbon fixed by bacterioplankton isless important in terms of carbon flow to higher trophic levelsthan would be expected if macrozooplankton were the dominantbacterivores, providing a more direct and efficient transferof carbon to larger organisms.  相似文献   

13.
Aluminum in lake water and in the organs of the fish Tribolodon hakonensis was investigated in Lake Usoriko (pH 3.6), Lake Inawashiroko (pH 5.0), and the Tenryu River (pH 7.7). The concentration of total soluble aluminum in the water was 0.51 mg l−1 in Usoriko, 0.05 mg l−1 in Inawashiroko, and less than 0.01 mg l−1 in the Tenryu. The chemical forms of soluble aluminum in the acid water were characterized as Al3+, AlL2+, and AlL≦1+. More than 90% of soluble aluminum in the water of Usoriko was Al3+, whereas AlL2+ was dominant in the water of Inawashiroko. The aluminum concentration in the organs of T. hakonensis in Usoriko was 42 μg g−1 wet weight in gills, 4.2 μg g−1 in muscle, 6.9 μg g−1 in bone, 12.7 μg g−1 in liver, 6.0 μg g−1 in kidney, and 6.0 μg g−1 in intestine, indicating accumulation of aluminum in the gills. The aluminum concentration in the organs of T. hakonensis living in Inawashiroko was approximately the same, in spite of the difference in water chemistry of the two acid lakes, especially for pH and aluminum. This suggests that aluminum accumulation might be controlled in the fish living in the acid lakes. In contrast, the aluminum concentration in the gills of T. hakonensis from the Tenryu was 2 μg g−1. Received: May 20, 1999 / Accepted: December 10, 1999  相似文献   

14.
Studies of fluctuations in total organic carbon (TOC) were performedin both the reference basin and the acidified basin of experimental LakeSkjervatjern, in order to separate effects of various catchment and in-lakeprocesses. Nearly five years of catchment acidification did not inducesignificant changes in TOC. TOC concentrations was not related clearly toprecipitation or runoff. In both basins, there was a regular, seasonal patternwith a gradual increase in TOC concentrations from spring to late autumn.Minima in concentrations occurred during periods with frozen ground inwinter, irrespective of discharge patterns. The decrease from 10 mg C l-1 in autumn to 1--2 mg C l-1 in latewinter, was only seen in surface layers. Runoff was the major loss routefor surface TOC in the lake. Photo-oxidation, bacterial oxidation, andsedimentation combined yielded maximum loss rates of 3%of surface TOC d-1. Below a depth of 1 m 0.5%d-1 was lost to these same processes. The surface microlayerhad 5--10 times more TOC than the bulk water on average, and could haveeffects on gas exchange and sub-surface light. Despite the oxidation ofTOC, the short residence time of the lake and rapid replacement of TOCfrom the catchment was the major determinant of lake water TOC.  相似文献   

15.
Possible causes of deaths of Oreochromis niloticus in Lake Chivero were examined in relation to changes in limnological conditions monitored over a 25‐month period. The fish deaths coincided with the collapse of an algal bloom that had developed and builtup in the lake for 8 months. Chlorophyll a and dissolved oxygen increased to average concentrations of 42.4 μg l?1 and 10.9 mg l?1 respectively prior to the collapse of the bloom. Dissolved oxygen decreased when the bloom started to die off and coincided with the fish deaths when the average surface dissolved oxygen concentration in the lake was 3.9 mg l?1 and was at a depth of 5 m <2 mg l?1. Mortality probably resulted from depressed oxygen levels caused by the high oxygen demand from the massive algal die‐off and released algal toxins. This is the first time that die‐off of algae has been linked to fish‐kills in Lake Chivero as occurs in other hypereutrophic systems.  相似文献   

16.
1. Microbial plankton dynamics in an ultra‐oligotrophic epishelf lake (Beaver Lake, Antarctica) were investigated over an austral summer (December 2002 to January 2003). The aim was to characterise carbon cycling in an environmentally extreme lake. 2. The lake had an unusual temperature profile with peak temperatures of 1.3–1.9 °C between 20 and 25 m. Photosynthetically active radiation penetrated to the lake bottom (110 m) on occasions. The ice cover underwent marked thinning and melting during the study period. 3. Chlorophyll a concentrations were consistently low, usually below 1 μg L?1, with highest concentrations close to the lake bottom, where the photosynthetic elements showed strong autofluorescence. Mean photosynthetic nanoflagellates ranged between 34.9 × 104 L?1 ± 33.5 (23rd December) and 130.9 × 104 L?1 ± 112.3 (4th December). Highest photosynthetic activity was usually recorded below 25 m. Rates of carbon fixation varied between 0.089 μg C L?1 h?1 ± 0.002 and 0.579 μg C L?1 h?1 ± 0.156. Primary production was limited by low temperature and orthophosphate availability. 4. Mean bacterial concentration throughout the water column ranged between 9.3 × 107 L?1 ± 1.2 (23rd December) and 14.0 × 107 L?1 ± 1.8 (28th January). Bacterial production was low, less than 10% of primary production and ranged between 2.1 ng C L?1 h?1 ± 0.8 and 12 ng C L?1 h?1 ± 0.9. Highest rates coincided with times of highest primary production. On occasion dissolved organic carbon (DOC) concentrations dropped to 20 μg L?1, probably below accurate limits of detection, suggesting that carbon substratum and phosphorus may have limited bacterial growth. 5. Heterotrophic nanoflagellates varied significantly over the summer from a mean of 26.6 × 104 L?1 ± 14.2 (23rd December) to 133.8 × 104 L?1 ± 33.5 (14th December). They imposed a significant grazing impact on the bacterioplankton, removing in excess of 100% of bacterial production in December. 6. The total organic carbon pool [DOC and particulate organic carbon (POC)] was below 600 μg L?1. The ratio of DOC : POC ranged between 0.44 : 1 and 2.8 : 1 in the upper 40 m of the water column, and 1.8 : 1 and 3.7 : 1 in the lower waters. The microbial plankton contributed 1–29% of POC, thus detrital POC made up the largest fraction of the POC pool. 7. Beaver Lake is an extreme lacustrine ecosystem where heterotrophic processes occasionally appear to be carbon limited. Significant summer ice‐melt, not seen in a previous opportunistic sampling, may be having an impact on the carbon cycle.  相似文献   

17.
Physical and chemical parameters of Pao-Cachinche reservoir (Venezuela) were measured in four stations (S1-S4) during an eighteen months period from September 1997 to February 1999. The tributaries of this reservoir introduce high amounts of nutrients from domestic wastewaters and from poultry and pig farms located in the basin. Thermal stratification was well established throughout the study period. Mountainous topography protects the water surface from mechanical action of wind, preventing water mixing. Hypoxic/anoxic conditions prevailed from 6–7 m depth down to the bottom in the limnetic stations. A strong smell of H2S was detected below the 10 m level. The low water transparency (max. 1.5 m) may be mainly attributed to a high biogenic turbidity. Water salinity was low, as the maximum conductivity measured (260 μS cm?1) suggests. The water was alkaline in the upper layers during the day time (pH >8.0), due to the high phytoplanktonic productivity, whereas in deeper layers, where decomposition processes predominate, pH was acidic (close to 6.0). Orthophosphate concentrations were high, reaching maximal concentrations in the deeper part of the reservoir (greater than 800 μg l?1). Total phosphorus exceeded 1000 μg l?1 in the hypolimnion during the dry season. Ammonia was the dominant inorganic nitrogen species, and its values were greater than 4000 μg l?1 in the hypolimnetic layer during the dry season. Nitrates and nitrites were present in relatively low concentrations, except for the Paito stream entrance, where nitrate concentrations remained above 260 μg l?1. Pao–Cachinche reservoir can be considered hypertrophic, according to Salas & Martinó’s criteria for tropical warm lakes, and could be classified as meromictic and warm monomictic, according to Lewis tropical lake types.  相似文献   

18.
The Salton Sea is a shallow (mean depth = 8 m; maximum depth = 15 m), saline (41–45 g l–1), intermittently mixing, 57 km long, 980 km2 lake located in the arid southwestern United States. The Sea is a wind driven system, with predominant winds paralleling the long axis of the lake, being strongest in spring and weakest in summer and fall. The Sea mixed daily or nearly daily between September and January. During this cooling period, moderate to high levels of dissolved oxygen (3–11 mg l–1) were found throughout the water column. Mean water column temperature ranged from a minimum of 13–14 °C in early January to a maximum of 30–34 °C in July–September. During most of this warming period, the Sea was thermally stratified but subject to periodic wind driven mixing events. Winds were stronger in spring 1998 than in 1997 or 1999, causing more rapid heating of the lake that year and also delaying onset of anoxic conditions in bottom waters. During summer months, mid-lake surface waters were sometimes supersatured with oxygen, and bottom waters were hypoxic or anoxic with sulfide concentrations > 5 mg l–1. Oxic conditions (> 1 mg O2 l–1) often extended a few meters deeper nearshore than they did well offshore as a consequence of greater mixing nearshore. Mixing events in late summer deoxygenated the entire water column for a period of days. Consumption of oxygen by sulfide oxidation likely was the principal mechanism for these deoxygenation events. Sulfide concentrations in surface waters were 0.5–1 mg l–1 approximately 3 days after one mixing event in mid-August 1999. These mixing events were associated with population crashes of phytoplankters and zooplankters and with large fish kills. In the southern basin, freshwater inflows tended to move out over the surface of the Sea mixing with saline lake water as a function of wind conditions. Salinity gradients often contributed more to water column stability than did thermal gradients in the southeasternmost portion of the lake.  相似文献   

19.
The surficial sediment (0–10 cm) of shallow eutrophic Lake Võrtsjärv (Estonia) was characterized by an acid insoluble residue of 50% dry weight and low nutrient, Fe and Mn content. Among phosphorus (P) fractions (Hieltjes and Lijklema , 1980), NaOH-NRP amounted on an average to 50%, HCl-RP to 30%, NaOH-RP to 16%, and NH4Cl-RP to 4% of their sum. Seasonal changes in sediment P content were inconsistent with mass balance calculations and could be attributed to sediment redistribution caused by decreasing water level. High Fe/P ratio (26–30) and the aeration of surficial sediment by frequent resuspension kept phosphate adsorbed. Low pore-water SRP (commonly <10 μg l−1) usually prevented phosphate release from surficial sediment. However, a storm in September 1996 (max. wind speed 16 m s−1) which coincided with the extremely low water level in the lake (mean depth 1.44 m), denuded deeper anoxic sediment layers and caused a SRP release of 193 mg P m−2 d−1.  相似文献   

20.
Response of a eutrophic, shallow subtropical lake to reduced nutrient loading   总被引:11,自引:1,他引:10  
1. Lake Apopka (FL, U.S.A.) was subjected to decades of high nutrient loading from farms developed in the 1940s on converted riparian wetlands. Consequences included perennially high densities of cyanobacteria, low water transparency, elimination of submerged vegetation, modified fish community, and deposition of nutrient‐rich, flocculent sediments. 2. Initial steps were taken to reduce phosphorus (P) loading. Through strengthened regulation and purchase of farms for restoration, external P loading was reduced on average from 0.56 to 0.25 g P m?2 year?1 (55%) starting in 1993. The P loading target for the lake is 0.13 g P m?2 year?1. 3. For the first 6 years of P loading reduction the annual sedimentation coefficient (σ) averaged 13% less than the prior long‐term value (0.97 versus 1.11 year?1). The sedimentation coefficient, σ, was lower in the last 3 years of the study, but this period included extreme low‐water conditions and may not be representative. Annual σ was negative (net P flux to the water column) only 1 year. 4. Wind velocity explained 43% of the variation in σ during the period before reductions in total phosphorus (TP) concentration of lake water, but this proportion dropped to 6% after TP reductions. 5. Annual mean TP concentrations differed considerably from values predicted from external loading and hydraulic retention time using the Vollenweider–Organization for Economic Co‐operation and Development relationship. Reductions in lake water TP concentration fit model predictions better when multiyear (3‐year) mean values were used. 6. Evidence available to date indicates that this shallow, eutrophic lake responded to the decrease in external P loading. Neither recycling of sediment P nor wind‐driven resuspension of sediments prevented improvements in water quality. Reductions in TP concentration were evident about two TP‐resident times (2 × 0.9 year) after programmes began to reduce P loading. Improvements in concentrations of chlorophyll a and total suspended solids as well as in Secchi transparency lagged changes in lake‐water TP concentration but reached similar magnitudes during the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号