首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another.  相似文献   

3.
The intensity of [1-14C]glucose, [6-14C]glucose, [1-14C]palmitate and [1-14C]leucine oxidation and the effect of insulin and hydrocortisone on this process were studied in the brain, duodenum mucosa, liver and skeletal muscle of 1- and 5-day old piglets in vitro. Most of the studied substrates are oxidized in the tissues of 5-day piglets more intensively. Insulin stimulates oxidation of [1-14C]glucose, [6-14C]glucose and [1-14C]leucine in the brain and duodenum mucosa in 1- and 5-day old piglets, while in the liver and skeletal muscle--only in 5-day old piglets. Hydrocortisone administration enhances oxidation of [1-14C]leucine in most of the studied tissues in 1-day piglets and oxidation of [1-14C]glucose and [6-14C]glucose--in 5-day piglets. Both hormones produce no essential influence on the intensity of [1-14C]palmitate oxidation in the studied tissues of piglets or somewhat weaken it.  相似文献   

4.
Simultaneous primed-continuous intravenous infusions of [6-3H]glucose and [U-14C]glucose were performed on 13 fed, 4 fasted, and 4 dexamethasone-treated sheep. In 10 of the experiments on fed sheep, glucagon or insulin was infused intraportally for 2 h after control values were obtained. The 3H-labeled glucose gave glucose production values that were only 4.4 +/- 0.5, 5.4 +/- 1.0, and 5.8 +/- 0.8% higher than 14C-labeled glucose in the normal fed, fasted, and dexamethasone-treated sheep, respectively. Glucagon or insulin infusions did not significantly alter this recycling. It is condluced that a recycling of glucose carbon through metabolic intermediates is minimal in the sheep as compared with other species and also that it is not significantly altered by fasting or by hormones that affect glucose production.  相似文献   

5.
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected.  相似文献   

6.
7.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

8.
9.
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.  相似文献   

10.
1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation.  相似文献   

11.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

12.
13.
14.
15.
Slices of ripening seeds of the pea (Pisum sativum) were suppliedwith [1-14C] G and [6-14C] G, and the S.A. was determined ofthe respirod carbon dioxide, pyruvate, and the acids of theT.C.A.C. as well as that of the individual carbon atoms of citrateand malate. The possibility that there exist active and inactive pools ofthe T.C.A.C. acids in the pea is considered and, for most ofthe acids, rejected. The results cannot be explained on the bais of the T.C.A.C.because the S.A. of the carbon dioxide liberated was some tentimes higher than could have come from the malate via the T.C.A.C.,too much 14C accumulated in the cycle acids to have come frompyruvate by the operation of the T.C.A.C., and the patterrnof label in citrate and malate was different from that expected. An alternative explanation is put forward based on the oxidationof glucose by the P.P.P. and movement of 14C by a series ofrapid isotope exchange reactions.  相似文献   

16.
17.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号