首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that the activity of the (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte membrane is inhibited by micromolar or nanomolar concentrations of cyclic AMP. Our further studies have now indicated that the inhibition of (Ca2+ + Mg2+)-dependent phosphohydrolase activity requires the participation of a membrane-associated cyclic AMP-dependent protein kinase and a membrane-associated protein substrate that is distinct from the ATPase itself. We have furthermore, identified a 20 kDa membrane protein which undergoes phosphorylation that is promoted by micromolar, but not millimolar, concentrations of cyclic AMP and which, when phosphorylated, undergoes dephosphorylation that is promoted by Ca2+. We suggest that this membrane component can participate in the modulation of the activity of the (Ca2+ + Mg2+)-dependent ATPase of the human erythrocyte.  相似文献   

2.
Subfractionation of sarcoplasmic reticulum from fast-twitch and slow-twitch rabbit skeletal muscles was performed on a sucrose density gradient. Vesicle fractions were characterized by: measurement of (Ca2+,Mg2+)-dependent (extra) ATPase, Mg2+-dependent (basal) ATPase, Ca2+ uptake characteristics, polypeptide patterns in sodium dodecylsulphate polyacrylamide gel electrophoreses, phosphoprotein formation and electronmicroscopy of negatively stained samples. In fast-twitch muscle, low and high density vesicles were separated. The latter showed high activity of (Ca2+,Mg2+)-dependent ATPase, negligible activity of Mg2+-dependent ATPase, high initial rate and high capacity of Ca2+ uptake, high amount of phosphorylated 115000-Mr polypeptide, and appeared morphologically as thin-walled vesicles covered with particles of 4 nm in diameter. Low density vesicles had little (Ca2+,Mg2+)-dependent ATPase but high Mg2+-dependent ATPase. Although the initial rate of Ca2+ uptake was markedly lower, the total capacity of uptake was comparable with that of high density vesicles. Phosphorylated 115000-Mr polypeptide was detectable at low concentrations. Instead, 57000 and 47000-Mr polypeptides were characterized as forming stable phosphoproteins in the presence of ATP and Mg2+. Negatively stained, these vesicles appeared to have smooth surfaces. It is suggested that low density vesicles represent a Ca2+ sequestering system different from that of high density vesicles and that Mg2+-dependent (basal) ATPase as well as the 57000 and 47000-Mr polypeptides are part of the Ca2+ transport system within the low density vesicles. According to the results from slow-twitch muscle, Ca2+ sequestration by the sarcoplasmic reticulum functions in this muscle type only through the low density vesicles.  相似文献   

3.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

4.
Potassium transport coupled to ATP hydrolysis has been reconstituted in proteoliposomes using a highly purified plasma membrane Mg2+-dependent ATPase of the yeast Schizosaccharomyces pombe. The ATPase activity in the incorporated enzyme was strongly stimulated (2.2-fold) by the H+-conducting agent carbonyl cyanide m-chlorophenylhydrazone (CCCP). The H+/K+ exchanger nigericin (in the presence of K+) stimulated 1.6-fold the ATPase activity. When both ionophores were added together, the stimulation was increased up to 2.7-fold. When a potassium concentration gradient (high K+ in) was applied to the proteoliposome membrane, a significant drop in the CCCP-stimulated ATPase activity was observed. Inversion of the K+ concentration gradient (high K+ out) did not decrease the stimulation by CCCP. High Na+ in also decreased the stimulation induced by CCCP in the absence but not in the presence of external K+. However, high Li+ in had no effect. Direct potassium efflux from the proteolyposomes was detected upon addition of MgATP using a selective K+ electrode. The ATP-dependent potassium efflux was abolished in CCCP and/or nigericin-pretreated proteoliposomes. However, during steady state ATP hydrolysis, a transient and small K+ efflux was observed upon addition of a CCCP pulse. I propose that the plasma membrane Mg2+-dependent ATPase in yeast cells not only carries out electrogenic H+ ejection but also drives the uptake of potassium via a voltage-sensitive gate which is closed in the absence and open in the presence of the membrane potential.  相似文献   

5.
At very low concentrations (less than 1 muM) triphenyltin chloride inhibits ATP formation and coupled electron transport in isolated spinach chloroplasts. Basal (-Pi) and uncoupled electron transport are not affected by triphenyltin. The membrane-bount ATP in equilibrium Pi exchange and Mg2+-dependent ATPase activities of chloroplasts are also completely sensitive to triphenyltin, although the Ca2+-dependent and Mg2+-dependent ATPase activities of the isolated coupling factor protein are insensitive to triphenyltin. The light-driven proton pump in chloroplasts is stimulated (up to 60%) by low levels of triphenyltin. Indeed, the amount of triphenyltin necessary to inhibit ATP formation or stimulate proton uptake is dependent upon the amount of chloroplasts present in the reaction mixture, with an apparent stoichiometry of 2-2.5 triphenyltin molecules/100 chlorophyll molecules at 50% inhibition of ATP formation and half-maximal stimulation of proton uptake. Chloroplasts partially stripped of coupling factor by an EDTA was are no longer able to accumulate protons in the light. However, low levels of triphenyltin can effectively restore this ability. The amount of triphenyltin required for the restoration of net proton uptake is also dependent upon the amount of chloroplasts, with a stoichiometry of 4-5 triphenyltin molecules/100 chlorophyll molecules at 50% reconstitution. On the basis of this and other evidence it is concluded that triphenyltin chloride inhibits phosphorylation.Atp in equilibrium Pi exchange and membrane-bound ATPase activities in chloroplasts by specifically blocking the transport of protons through a membrane-bound carrier or channel located in a hydrophobic region of the membrane at or near the functional binding site for the coupling factor.  相似文献   

6.
A plasma-membrane fraction was isolated from a post-nuclear extract of human neutrophils by centrifugation through a linear sucrose density gradient. This fraction exhibited a Ca2+-dependent adenosine triphosphatase (ATPase) activity that could be differentiated from mitochondrial or myosin ATPase and from plasma-membrane Mg2+-dependent ATPase. When assayed in the presence of [gamma-32P]ATP, the Ca2+-dependent ATPase reaction resulted in the formation of an acid-resistant hydroxylamine-sensitive bond between the gamma-[32P] phosphate group and a membrane protein subunit with an apparent mol.wt. of 135000. Half-maximal activating effect of Ca2+ was found at 82nM and 0.18 microM for the ATPase and the formation of the 32P-membrane complex respectively. Generation of the phosphorylated product attained the steady state at 0 degrees C by about 30s, and was rapidly reversed by ADP. These results suggest that the Ca2+-activated ATPase reaction occurs through the formation of a phosphoprotein intermediate, similar to that described for some Ca2+-dependent ATPase enzymes associated with Ca2+ transport. The possibility thus exists that the neutrophil Ca2+-dependent ATPase catalyses a process of Ca2+ extrusion from the cell, thereby participating in the regulation of several Ca2+-dependent neutrophil functions.  相似文献   

7.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

9.
Denervation of rat skeletal muscle produces after 14 days a decrease in Ca2+ uptake of a heterogeneous population of sarcoplasmic-reticulum vesicles, when measured in the presence of oxalate. The Mg2+-dependent ATPase (Ca2+-independent) activity increased after the same period and the Ca2+ + Mg2+-dependent ATPase activity decreased. Concomitant with these changes, there was an increase in vesicle size and calcium content. The observations are discussed in terms of changes in altered membrane structure, manifested in the shift of the equilibrium of the ATPase from an enzyme involved in calcium transport to a phosphoenzyme giving rise to an increase in the Mg2+-dependent ATPase activity.  相似文献   

10.
L de Meis  M M Sorenson 《Biochemistry》1975,14(12):2739-2744
The activation of ATP reversible Pi exchange, normally associated with a Ca2+ concentration gradient in sarcoplasmic reticulum vesicles, can be obtained in "leaky" vesicles in 4-10 mM CaCl2. In the micromolar range, Ag+ activates the ATP reversible Pi exchange two- to fourfold. Similar concentrations of Ag+ promote a parallel inhibition of Ca2+- activated ATP hydrolysis and Ca2+ uptake in intact vesicles. Maximal inhibition of these activities by Ag+ leaves the Mg2+-dependent ATPase unaffected. No net synthesis of ATP was demonstrated in leaky vesicles. The effects of Ag+ depends on the protein concentration and persist after removal of Ag+ from the medium. Membrane phosphorylation from Pi or from ATP is respectively activated or inhibited by Ag+ in reciprocal fashion.  相似文献   

11.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

12.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

13.
Growth of Clostridium perfringens was inhibited by compounds which dissipate or prevent the formation of electrochemical proton gradients. Membrane vesicles prepared from this organism exhibited Mg2+-dependent adenosine triphosphatase (ATPase) activity sensitive to N,N'-dicyclohexylcarbodiimide. Mg2+-ATPase activity was optimal of 50 degrees C, but no discrete pH optimum was observed. Adenosine triphosphate-dependent quenching of the fluorescence of the weak base quinacrine by everted membrane vesicles suggested that the Mg2+-ATPase is a proton pump capable of generating an electrochemical proton gradient. Adenosine triphosphate-dependent transport of Ca2+ by everted vesicles was sensitive to uncouplers and inhibitors of the Mg2+-ATPase.  相似文献   

14.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

15.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

16.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

17.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

18.
The ATPase activity of CF1 isolated from pea chloroplasts with epsilon-ATP, the fluorescent analog of ATP and ATP used as substrates, in the presence of Mg2+, Ca2+ and sodium sulfite (stimulator of the ATPase activity) was studied. The rate of epsilon-ATP hydrolysis in the presence of Mg2+ is nearly two times as low as that of ATP; an addition of sodium sulfite to the reaction mixture increases the reaction rate without changing the above ratio. The rate of Ca2+-dependent hydrolysis of epsilon-ATP is rather low as compared to that in the presence of Mg2+. epsilon-ADP is a competitive inhibitor of Mg2+-dependent ATPase reaction and inhibits this process in the presence of Ca2+, the inhibition being of a mixed type. Modification of CF1 by covalent binding of epsilon-ADP results in a 70-80% decrease of the Mg2+-dependent ATPase activity, the Ca2+-dependent ATPase activity is changed only insignificantly thereby. The differences in the activation of ATP and epsilon-ATP hydrolyses by Ca2+ and Mg2+ can be accounted for by the existence of two sites in the active center of CF1, which are specific for Mg2+ and Ca2+, respectively. It is concluded that the binding of epsilon-ADP occurs in the Mg2+-dependent ATPase site of the active center.  相似文献   

19.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

20.
Biological membrane fusion employs divalent cations as protein cofactors or as signaling ligands. For example, Mg2+ is a cofactor for the N-ethylmaleimide-sensitive factor (NSF) ATPase, and the Ca2+ signal from neuronal membrane depolarization is required for synaptotagmin activation. Divalent cations also regulate liposome fusion, but the role of such ion interactions with lipid bilayers in Rab- and soluble NSF attachment protein receptor (SNARE)-dependent biological membrane fusion is less clear. Yeast vacuole fusion requires Mg2+ for Sec18p ATPase activity, and vacuole docking triggers an efflux of luminal Ca2+. We now report distinct reaction conditions where divalent or monovalent ions interchangeably regulate Rab- and SNARE-dependent vacuole fusion. In reactions with 5 mm Mg2+, other free divalent ions are not needed. Reactions containing low Mg2+ concentrations are strongly inhibited by the rapid Ca2+ chelator BAPTA. However, addition of the soluble SNARE Vam7p relieves BAPTA inhibition as effectively as Ca2+ or Mg2+, suggesting that Ca2+ does not perform a unique signaling function. When the need for Mg2+, ATP, and Sec18p for fusion is bypassed through the addition of Vam7p, vacuole fusion does not require any appreciable free divalent cations and can even be stimulated by their chelators. The similarity of these findings to those with liposomes, and the higher ion specificity of the regulation of proteins, suggests a working model in which ion interactions with bilayer lipids permit Rab- and SNARE-dependent membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号