首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages infected with amastigotes of Leishmania major and treated with IFN-gamma in vitro develop potent antimicrobial activities that eliminate the intracellular parasite. This antileishmanial activity was suppressed in a dose dependent fashion by NG-monomethyl-L-arginine (NGMMLA), a competitive inhibitor of nitrite, nitrate, nitric oxide and L-citrulline synthesis from L-arginine. Excess L-arginine added to infected macrophage cultures reversed the inhibitory effects of NGMMLA. Addition of arginase to culture media inhibited intracellular killing by IFN-gamma-treated cells. Similar effects were seen with macrophages obtained from BCG-infected C3H/HeN mice. Increased levels of nitrite, an oxidative product of the L-arginine-dependent effector mechanism, was measured in cultures of infected IFN gamma-treated macrophages as well as infected BCG-activated macrophages. Nitrite production correlated with development of antileishmanial activity. Nitrite production and microbicidal activity both decreased when in vivo or in vitro-activated macrophages were cultured in the presence of either arginase or NGMMLA. Nitric oxide synthesized from a terminal guanidino nitrogen atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe-dependent enzymatic pathways vital to the survival of amastigotes within macrophages.  相似文献   

2.
Endothelial function is impaired in hypercholesterolemia and atherosclerosis, which is probably due to reduced biological activity of endothelium-derived nitric oxide (NO). NO is synthesized in functionally intact endothelium by oxidation of the terminal guanidino nitrogen atom(s) of the amino acid precursor, L-arginine. We applied stable isotope dilution techniques and gas chromatographic-mass spectrometric approaches to investigate metabolism of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate in hypercholesterolemic rabbits and controls. After 4 weeks on control or 1% cholesterol-enriched diet, rabbits received 267 +/- 6 micromol of L-[guanidino-(15)N(2)]-arginine/kg of body weight via gastric cannulation. (15)N-isotope content of L-arginine in plasma and in platelet lysates increased 2h later in both groups, and almost returned to baseline until 24h. (15)N-isotope content of plasma nitrite and nitrate also increased in both groups at 2h, and had almost returned to natural content 24h later. (15)N-isotope content of urinary nitrate was significantly increased in control animals in urines collected from 0 to 12, 12 to 24, and had returned to baseline in the urine sample collected from 24 to 48 h. In the cholesterol group only a slight, insignificant elevation of (15)N-isotope content was observed for urinary nitrate. The extent of conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate was strongly and inversely correlated to plasma concentration of the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), which was elevated in cholesterol-fed rabbits (R=0.77; p < 0.05). Our data show that baseline NO synthase turnover rate is reduced in rabbits during early hypercholesterolemia. Our study gives evidence that the mechanism of the impaired conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate most likely involves inhibition of NO synthase by ADMA, which is present in elevated concentrations in hypercholesterolemia.  相似文献   

3.
Previous studies show that cytotoxic activated macrophages cause a reproducible pattern of metabolic inhibition in viable tumor target cells. This includes inhibition of DNA synthesis, two oxidoreductases of the mitochondrial electron transport chain (NADH: ubiquinone oxidoreductase and succinate: ubiquinone oxidoreductase), and the citric acid cycle enzyme aconitase. This pattern of metabolic inhibition is induced by a cytotoxic activated macrophage associated biochemical pathway with L-arginine deimination activity that synthesizes L-citrulline from L-arginine and oxygenated nitrogen derivatives from the imino nitrogen removed from the guanido group of L-arginine. Here we report that macrophages activated in vivo by infection with bacillus Calmette-Guérin or in vitro by murine rIFN-gamma or murine IFN-alpha/beta (in the presence of the second signal LPS in all cases) develop inhibition of aconitase and the same two oxidoreductases of the mitochondrial electron transport chain as was documented earlier in target cells of cytotoxic activated macrophages. In addition, this pattern of metabolic inhibition which develops in cytotoxic activated macrophages is caused by the L-arginine-dependent effector mechanism. Inhibition of mitochondrial respiration by effectors of the L-arginine-dependent cytotoxicity system results in a compensatory increase in activity of the glycolytic pathway. We speculate that the pattern of metabolic inhibition induced in cytotoxic activated macrophages by the L-arginine-dependent effector system causes changes in the macrophage intracellular environment that increases resistance to certain facultative and obligate intracellular pathogens.  相似文献   

4.
Recent studies show the importance of a single amino acid, L-arginine, as a necessary substrate for activated macrophage-mediated cytotoxic activity for tumor target cells and microbiostatic function for Cryptococcus neoformans. The present studies were carried out to determine the role of the L-arginine-dependent macrophage effector function on the microbiostatic effects of activated macrophages on the obligate intracellular protozoan, Toxoplasma gondii. A guanidino methylated derivative of L-arginine, NGmonomethyl-L-arginine (NGMMA), a competitive inhibitor of the L-arginine-dependent effector pathway, virtually abolished the normally potent microbiostatic effect of macrophages for Toxoplasma gondii after activation of the macrophages in vitro by IFN-gamma and LPS or in vivo by i.p. injection of killed Corynebacterium parvum. Addition of supplemental L-arginine to the culture medium overcame the capacity of NGMMA to block activated macrophage-mediated microbiostasis of Toxoplasma. The ability of NGMMA to inhibit the microbiostatic capacity of activated macrophages for Toxoplasma gondii correlated with almost total inhibition of synthesis of nitrite, nitrate, and L-citrulline from L-arginine. Therefore, as is the case for tumor target cells and C. neoformans, the synthesis of inorganic nitrogen oxides from a terminal guanidino nitrogen atom of L-arginine appears to be essential for murine cytotoxic activated macrophage mediated microbiostatic capacity for T. gondii.  相似文献   

5.
Macrophage synthesis of nitrite and nitrate after activation by BCG infection or by treatment in vitro with both T cell-derived (lymphokines (LK) or recombinant murine interferon-gamma (IFN-gamma] and bacterial (lipopolysaccharide (LPS) and heat-killed bacillus Calmette-Guerin (hk BCG] agents was studied by using macrophages from C3H/He and C3H/HeJ mice. Spleen and peritoneal macrophages isolated from BCG-infected donors that were producing nitrate continued to synthesize nitrite and nitrate in culture. LPS treatment in vitro (25 or 50 micrograms/ml) additionally increased this nitrite/nitrate synthesis. Thioglycolate-elicited macrophages from non-infected C3H/HeJ mice treated with LK also produced nitrite/nitrate, and concurrent LPS (0.1 to 50 micrograms/ml) treatment resulted in enhanced synthesis. Recombinant IFN-gamma also stimulated nitrite/nitrate synthesis by C3H/He and CeH/HeJ macrophages as did LPS (C3H/He only) and hk BCG. When given concurrently with either LPS or hk BCG, IFN-gamma enhanced C3H/He and C3H/HeJ macrophage nitrite/nitrate synthesis over that produced by macrophages treated with either LPS or hk BCG alone. Macrophages activated in vitro exhibited a 4 to 12 hr lag time before engaging in nitrite/nitrate synthesis, which then proceeded for 36 to 42 hr at linear rates. Daily medium renewal did not alter the synthesis kinetics but increased the total amount of nitrite/nitrate produced. Nitrate and nitrite were stable under the conditions of culture and when added did not influence additional macrophage synthesis. Taken together, these results indicate that T cell lymphokines and IFN-gamma are powerful modulators of macrophage nitrite/nitrate synthesis during BCG infection and in vitro, and nitrite/nitrate synthesis appears to be common property of both primed and fully activated macrophage populations.  相似文献   

6.
Endogenous nitric oxide biosynthesis in mice receiving allogeneic heterotopic heart transplants was monitored as a function of time post-transplant. Nitric oxide production was measured by daily urine nitrate levels and by formation of paramagnetic heme-nitrosyl complexes in the cardiac tissue. Exogenous sources of urine nitrate and EPR signal were minimized by maintaining the animals on a low nitrite/nitrate diet. Urine nitrate peaked on postoperative day 7. A heme-nitrosyl EPR signal also appeared in the cardiac tissue on postoperative day 7 and remained unchanged in size until rejection on postoperative day 9 at which time the peak height of the signal nearly tripled. Some of the animals in the study were treated with the nitric oxide synthase inhibitor, Nω-monomethyl-l-arginine which caused marked inhibition of urinary nitrate excretion and prevented heme-nitrosyl complex formation in beating hearts. However, administration of the inhibitor did not increase graft survival time. Low intensity heme-nitrosyl signals were identified in inhibitor-treated allogeneic hearts rejection. Syngeneic heart transplants did not induce urinary nitrate excretion nor EPR signal formation. These results show that cytokine induced high output nitric oxide synthesis from l-arginine is a prominent biochemical component of the cell-mediated immune response to cardiac allografts in mice. However, nitric oxide production was not essential for rejection of cardiac allografts mismatched at the major histocompatibility locus.  相似文献   

7.
The role of nitric oxide (NO) in graft-versus-tumor-effect (GVT) was evaluated in the present study. GVT was induced by intravenous injection of C57BL/6J (H-2b) mouse splenocytes to {C57BL/6J (H-2b) x BALB/c (H-2d)} F1 mice bearing Meth A (H-2d) ascites tumors. Induction of GVT increased nitrite production and expression of inducible NO synthase by ascites cells. The increased nitrite production was inhibited by NG-monomethyl-L-arginine (MLA). Experiments employing immunomagnetic depletion of Mac-1+ cells from ascites indicated that macrophages were a major cellular source of the nitrite production. Interferon-gamma levels were increased in both serum and ascites fluid during GVT. Induction of GVT prolonged survival of ascites-bearing mice, and increased urinary nitrate excretion. MLA administration inhibited GVT-induced increase in urinary nitrate excretion, and further prolonged GVT-induced increase in survival. These results indicate that NO synthesis is induced in tumors during GVT, and the NO acts as an inhibitor of GVT.  相似文献   

8.
We tested whether supplementation with L-arginine can augment aerobic capacity, particularly in conditions where endothelium-derived nitric oxide (EDNO) activity is reduced. Eight-week-old wild-type (E(+)) and apolipoprotein E-deficient mice (E(-)) were divided into six groups; two groups (LE(+) and LE(-)) were given L-arginine (6% in drinking water), two were given D-arginine (DE(+) and DE(-)), and two control groups (NE(+) and NE(-)) received no arginine supplementation. At 12-16 wk of age, the mice were treadmill tested, and urine was collected after exercise for determination of EDNO production. NE(-) mice demonstrated a reduced aerobic capacity compared with NE(+) controls [maximal oxygen uptake (VO(2 max)) of NE(-) = 110 +/- 2 (SE) vs. NE(+) = 122 +/- 3 ml O(2). min(-1). kg(-1), P < 0.001]. This decline in aerobic capacity was associated with a diminished postexercise urinary nitrate excretion. Mice given L-arginine demonstrated an increase in postexercise urinary nitrate excretion and aerobic capacity in both groups (VO(2 max) of LE(-) = 120 +/- 1 ml O(2). min(-1). kg(-1), P < 0.05 vs. NE(-); VO(2 max) of LE(+) = 133 +/- 4 ml O(2). min(-1). kg(-1), P < 0.01 vs. NE(+)). Mice administered D-arginine demonstrated an intermediate increase in aerobic capacity in both groups. We conclude that administration of L-arginine restores exercise-induced EDNO synthesis and normalizes aerobic capacity in hypercholesterolemic mice. In normal mice, L-arginine enhances exercise-induced EDNO synthesis and aerobic capacity.  相似文献   

9.
Cytosols prepared from murine peritoneal macrophages and the RAW 264 macrophage cell line catalyzed conversion of L-arginine to the labile vaso-relaxant nitric oxide and its accumulating endproducts, nitrite and nitrate. This activity required previous exposure of the cells to interferon-gamma and bacterial lipopolysaccharide. Nitrogen oxide synthetase activity was characterized further using nitrite + nitrate production as an indicator of the synthesis of all three nitrogen oxides. Nitrogen oxide synthetase activity was heat-sensitive, NADPH-dependent, and exhibited substrate stereospecificity. The nitrite + nitrate formation was proportional to time and concentration of cytosol. However, dilution decreased the specific activity, suggesting a cofactor requirement in addition to NADPH. Specific activity was restored by addition of cytosol from non-activated macrophages, which itself did not make nitric oxide. Both high and low molecular weight fractions of control macrophage cytosol were required to restore activity of cytosol from activated macrophages that had been either diluted or partially purified. Thus, the enzymatic system involved in nitric oxide synthesis by murine macrophages consists of at least one inducible and two constitutive components.  相似文献   

10.
Effect of coconut protein in rats fed high fat cholesterol containing diet on the metabolism of lipids and lipid peroxides was studied. In addition, effect of coconut protein were compared with rats fed L-arginine. The results indicate that those fed coconut protein and those fed L-arginine showed significantly lower levels of total cholesterol, LDL+ VLDL cholesterol, Triglycerides and Phospholipids in the serum and higher levels of serum HDL cholesterol. The concentration of total cholesterol, triglycerides and phospholipids in the tissues were lower in these groups. There was increased hepatic cholesterogenesis which is evident from the higher rate of incorporation of labeled acetate into free cholesterol. Increased conversion of cholesterol to bile acids and increased fecal excretion of bile acids were observed. Feeding coconut protein results in decreased levels of Malondialdehyde in the heart and increased activity of Superoxide dismutase and Catalase. Supplementation of coconut protein causes increased excretion of urinary nitrate which implies higher rate of conversion of arginine into nitric oxide. In the present study, the arginine supplemented group and the coconut protein fed group produced similar effects. These studies clearly demonstrate that coconut protein is able to reduce hyperlipidemia and peroxidative effect induced by high fat cholesterol containing diet and these effects are mainly mediated by the L-arginine present in it.  相似文献   

11.
Dietary nitrate is metabolized to nitrite by bacterial flora on the posterior surface of the tongue leading to increased salivary nitrite concentrations. In the acidic environment of the stomach, nitrite forms nitrous acid, a potent nitrating/nitrosating agent. The aim of this study was to examine the pharmacokinetics of dietary nitrate in relation to the formation of salivary, plasma, and urinary nitrite and nitrate in healthy subjects. A secondary aim was to determine whether dietary nitrate increases the formation of protein-bound 3-nitrotyrosine in plasma, and if dietary nitrate improves platelet function. The pharmacokinetic profile of urinary nitrate excretion indicates total clearance of consumed nitrate in a 24 h period. While urinary, salivary, and plasma nitrate concentrations increased between 4- and 7-fold, a significant increase in nitrite was only detected in saliva (7-fold). High dietary nitrate consumption does not cause a significant acute change in plasma concentrations of 3-nitrotyrosine or in platelet function.  相似文献   

12.
Evaluation of nitric oxide production by lactobacilli   总被引:4,自引:0,他引:4  
Six strains of Lactobacillus fermentum and Lactobacillus plantarum were investigated for nitric oxide (NO) production. First, the potential presence of NO synthase was examined. None of the strains of L. fermentum and L. plantarum examined produced NO from L-arginine under aerobic conditions. Interestingly, all L. fermentum strains expressed strong L-arginine deiminase activity. All L. fermentum strains produced NO in MRS broth, but the NO was found to be chemically derived from nitrite, which was produced by L. fermentum from nitrate present in the medium. Indeed all L. fermentum strains express nitrate reductase under anaerobic conditions. Moreover, one strain, L. fermentum LF1, had nitrate reductase activity under aerobic conditions. It was also found that L. fermentum strains JCM1173 and LF1 possessed ammonifying nitrite reductase. The latter strain also had denitrifying nitrite reductase activity at neutral pH under both anaerobic and aerobic conditions. The LF1 strain is thus capable of biochemically converting nitrate to NO. NO and nitrite produced from nitrate by lactobacilli may constitute a potential antimicrobial mechanism. studied in a rat acute liver injury model (Adawi et al. 1997). The results indicate that Lactobacillus plantarum DSM 9842 may possess NOS (Adawi et al. 1997). However, NO production from L-arginine has not been investigated in pure cultures of L. plantarum. According to the results of a 15N enrichment experiment, traces of (NO2-+NO3-)-N (total oxidised nitrogen: TON), which seemed to be formed by the resting cells of Lactobacillus fermentum IFO3956, appeared to be derived from L-arginine (Morita et al. 1997). Therefore, it was suggested that L. fermentum may possess a NOS. However, NO produced from L-arginine was not directly measured and a NOS inhibitor test was not performed by Morita et al. (1997). It is known that L-arginine deiminase (ADI) in bacteria may convert L-arginine to NH4+ (Cunin et al. 1986), which may be further oxidised to TON via nitrification by bacteria. Therefore, 15N enrichment experiments could not definitely conclude that L. fermentum possess NOS to convert L-arginine directly to NO. In this study, six Lactobacillus strains belonging to L. plantarum and L. fermentum were measured for NO production in MRS broth. The metabolism of nitrate and L-arginine by the Lactobacillus cell suspensions was also studied. The possibility that NO and nitrite production by lactobacilli may be a potential probiotic trait is also discussed.  相似文献   

13.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from L-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects constitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

14.
Human safety controversies surrounding nitrate and nitrite in the diet   总被引:3,自引:0,他引:3  
Nitrate and nitrite are part of the human diet as nutrients in many vegetables and part of food preservation systems. In the 1950s and 1960s the potential for formation of nitrosamines in food was discovered and it ignited a debate about the safety of ingested nitrite which ultimately focused on cured meats. Nitrate impurities in salt used in the drying of meat in ancient times resulted in improved protection from spoilage during storage. This evolved into their deliberate modern use as curing ingredient responsible for 'fixing' the characteristic color associated with cured meats, creating a unique flavor profile, controlling the oxidation of lipids, and serving as an effective antimicrobial. Several critical reports and comprehensive reviews reporting weak associations and equivocal evidence of nitrite human health safety have fostered concerns and debate among scientists, regulators, press, consumer groups, and consumers. Despite periodic controversy regarding human health concerns from nitrite consumption, a building base of scientific evidence about nitrate, nitrite, heme chemistry, and the overall metabolism of nitrogen oxides in humans has and continues to affirm the general safety of nitrate/nitrite in human health. As nitrite based therapeutics emerge, it is important to consider the past controversies and also understand the beneficial role in the human diet.  相似文献   

15.
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.  相似文献   

16.
Numerous methods are available for measurement of nitrate (NO(-)(3)). However, these assays can either be time consuming or require specialized equipment (e.g., nitrate reductase, chemiluminescent detector). We have developed a method for simultaneous evaluation of nitrate and nitrite concentrations in a microtiter plate format. The principle of this assay is reduction of nitrate by vanadium(III) combined with detection by the acidic Griess reaction. This assay is sensitive to 0.5 microM NO(-)(3) and is useful in a variety of fluids including cell culture media, serum, and plasma. S-Nitrosothiols and L-arginine derivatives were found to be potential interfering agents. However, these compounds are generally minor constituents of biological fluids relative to the concentration of nitrate/nitrite. This report introduces a new, convenient assay for the stable oxidation products of nitrogen oxide chemistry in biological samples.  相似文献   

17.
Rates of whole body amino nitrogen flux were measured in 16 obese adolescents undergoing weight reduction with a high protein low energy diet. The subjects received approximately 2.5 g of animal protein per day per kilogram ideal body weight and maintained nitrogen balance throughout the 18 days on the diet. Flux rates were calculated separately from the cumulative excretion of 15N in urinary ammonia and urea following the administration of a single dose of [15N]glycine. The pattern of 15N label appearance in urinary ammonia and urea nitrogen was followed for 72 h after the administration of [15N]glycine. Significant amounts of label continued to be excreted in both urinary ammonia and nitrogen for 36-48 h after label administration. The weight-reducing diet accelerated 15N cumulative excretion in urinary urea, but not in ammonia nitrogen compared with the control diet. Whole body nitrogen flux rates increased rapidly and significantly on the diet. Using the urea end product, this increase was evident on the 4th diet day, but not by the 7th or subsequent days. On the other hand, using the ammonia end product, flux rate increased markedly (p less than 0.0001) and remained elevated throughout the whole study. Our results demonstrate adaptive changes in whole body amino-nitrogen metabolism in response to the reducing diet. Different patterns of change are seen depending upon whether an ammonia or a urea end product is used. Our data thus add to the evidence for compartmentation of the body's amino-nitrogen pools.  相似文献   

18.
L-arginine is a precursor for nitrate biosynthesis in humans   总被引:6,自引:0,他引:6  
Nitrogen from L-arginine was incorporated into urinary nitrate in human subjects. Two subjects given an oral dose of [15N2]L-arginine excreted 24 and 17 umol [15N]nitrate/24 hr, respectively, in their urine in the 24 hr period following the dose. This work demonstrates that L-arginine, a nitrogen source for biosynthesized nitrate in cultured cells and research animals, is a precursor for endogenously synthesized nitrate in humans.  相似文献   

19.
Penaeus monodon (12.13+/-1.14 g) exposed individually to six different nitrite and nitrate regimes (0.002, 0.36 and 1.46 mM nitrite combined with 0.005 and 7.32 mM nitrate), at a salinity of 25 ppt, were examined for hemolymph nitrogenous compounds and whole shrimp's nitrogen excretions after 24 h. Nitrogen excretion increased directly with ambient nitrite and nitrate. Hemolymph nitrite, nitrate, urea and uric acid levels increased, while hemolymph ammonia, oxyhemocyanin and protein were inversely related to ambient nitrite. Exposure of P. monodon to elevated nitrite in the presence of 7.32 mM nitrate did not alter hemolymph nitrite, ammonia, uric acid, oxyhemocyanin and protein levels, but caused an increase in hemolymph nitrate and a decrease in hemolymph urea as compared to exposure to elevated nitrite only. Following exposure to elevated nitrite, nitrite was oxidized to nitrate and P. monodon showed uricogenesis and uricolysis. The shrimp also used strategies to avoid joint toxicities of nitrite and metabolic ammonia by removing ammonia or reducing ammonia production under the stress of elevated nitrite.  相似文献   

20.
Six normal volunteers were vaccinated against typhoid-cholera. 15N-Glycine was injected the morning after vaccination. The injection was repeated three to six days and 10 days later. All subjects ate the same diet on each occasion. Excretion of 15N in urinary ammonia and total urinary excretion of nitrogen, ammonia, and creatinine were determined after each injection of isotope. Urinary excretion of 15N was used to calculate rates of whole-body protein turnover. Total urinary nitrogen and ammonia excretions showed no appreciable change on all three days. Creatinine excretion was significantly higher the day after vaccination than on the other two days (p < 0.05). Rates of protein turnover were also significantly higher on this day: a 37% increase in synthesis and 55% increase in degradation were noted. These results show that during the reaction to vaccination there was a stimulation of whole-body protein metabolism that is similar to that produced by sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号