首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent homology modeling studies have identified specific residues (epitope) of the Leishmania RNA helicase protein (LmeIF) that stimulates production of IL-12 cytokine. However, question remains concerning how LmeIF’s N-terminal moiety initiates adjuvant effects. Extensive molecular modeling combining the normal mode analysis (NMA) and molecular dynamics simulations, in the present study, has demonstrated that the LmeIF structure may exist in two different forms corresponding to the extended and collapsed (closed) states of the entire structure. The computational results showed that the two domains of the LmeIF structure tend to undergo large fluctuations in a concerted fashion and have strong effect on the solvent accessible surface of the epitope situated on the N-terminal structure. The conformational freedom of the C-terminal domains may explain why the entire LmeIF protein is not as active as the N-terminal moiety. Thereafter, a comparative genome analysis with subsequent homology modeling and molecular electrostatic potential (MEP) techniques allowed us to predict a novel and plausible RNA helicase (LI-helicase) from the Listeria source with adjuvant property as observed for the Leishmania eIF-4A protein. The structural folding and MEP maps revealed similar topologies of the epitope of both LmeIF and LI-helicase proteins and striking identity in the local disposition of the charged groups.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:7  相似文献   

2.
Protection from cutaneous leishmaniasis, a chronic ulcerating skin lesion affecting millions, has been achieved historically using live virulent preparations of the parasite. Killed or recombinant Ags that could be safer as vaccines generally require an adjuvant for induction of a strong Th1 response in murine models. Murine rIL-12 as an adjuvant with soluble Leishmania Ag has been shown to protect susceptible mice. We used 48 rhesus macaques to assess the safety, immunogenicity, and efficacy of a vaccine combining heat-killed Leishmania amazonensis with human rIL-12 (rhIL-12) and alum (aluminum hydroxide gel) as adjuvants. The single s.c. vaccination was found to be safe and immunogenic, although a small transient s.c. nodule developed at the site. Groups receiving rhIL-12 had an augmented in vitro Ag-specific IFN-gamma response after vaccination, as well as increased production of IgG. No increase in IL-4 or IL-10 was found in cell culture supernatants from either control or experimental groups. Delayed hypersensitivity reactions were not predictive of protection. Intradermal forehead challenge infection with 107 metacyclic L. amazonensis promastigotes at 4 wk demonstrated protective immunity in all 12 monkeys receiving 2 microgram rhIL-12 with alum and Ag. Partial efficacy was seen with lower doses of rhIL-12 and in groups lacking either adjuvant. Thus, a single dose vaccine with killed Ag using rhIL-12 and alum as adjuvants was safe and fully effective in this primate model of cutaneous leishmaniasis. This study extends the murine data to primates, and provides a basis for further human trials.  相似文献   

3.
Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4+-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.  相似文献   

4.
Proteoliposomes (PL) from Neisseria meningitidis B have been widely used as a core antigen for antimeningococcal vaccination. PL contain major outer membrane proteins, LPS and phospholipids, and they induce a strong Th1 immune response, but they have low stability in solution. Attending to the need for new vaccine adjuvants, we developed a highly stable cochleate structure (CS) from PL using a technology that allows easy incorporation of new antigens. We explored the ability of PLCS to activate the immune system and its possible application as an adjuvant for parenteral and mucosal routes. Our results showed that PLCS were able to upregulate the expression of MHC class II and costimulatory molecules on human dendritic cells, as well as being able to stimulate the production of soluble mediators of a Th1 response, such as IL-12 and nitric oxide. High levels of anti-PL IgG were detected in serum after i.m. or mucosal (oral and nasal) administration, but also anti-PL secretory IgA was produced in saliva following nasal delivery. The immune response polarization to a Th1 pattern was confirmed by the induction of IgG2a antibodies, positive delayed type hypersensitivity reactions, and IFN-gamma production by splenocytes from immunized mice. The adjuvant potential was explored using PLCS containing ovalbumin (Ova). PLCS-Ova was able to elicit a substantial increase in anti-Ova IgG compared with Ova alone. In addition, a significant reduction in lesion size was observed in mice immunized with Leishmania major antigens in PLCS after challenge with virulent protozoa, suggesting at least partial modulation of the Th2 environment induced by this parasite. In conclusion, our results support the use of PLCS as a potent Th1 adjuvant for parenteral and mucosal vaccines.  相似文献   

5.
An effective protein-based vaccine for tuberculosis will require a safe and effective adjuvant. There are few adjuvants in approved human vaccines, including alum and the oil-in-water-based emulsions MF59 (Novartis Vaccines and Diagnostics), AS03 and AS04 (GlaxoSmithKline Biologics), AF03 (Sanofi), and liposomes (Crucell). When used with pure, defined proteins, both alum and emulsion adjuvants are effective at inducing primarily humoral responses. One of the newest adjuvants in approved products is AS04, which combines monophosphoryl lipid A, a TLR-4 agonist, with alum. In this study, we compared two adjuvants: a stable oil-in-water emulsion (SE) and a stable oil-in-water emulsion incorporating glucopyranosyl lipid adjuvant, a synthetic TLR-4 agonist (GLA-SE), each together with a recombinant protein, ID93. Both the emulsion SE and GLA-SE adjuvants induce potent cellular responses in combination with ID93 in mice. ID93/SE induced Th2-biased immune responses, whereas ID93/GLA-SE induced multifunctional CD4(+) Th1 cell responses (IFN-γ, TNF-α, and IL-2). The ID93/GLA-SE vaccine candidate induced significant protection in mice and guinea pigs, whereas no protection was observed with ID93/SE, as assessed by reductions in bacterial burden, survival, and pathology. These results highlight the importance of properly formulating subunit vaccines with effective adjuvants for use against tuberculosis.  相似文献   

6.
Toll-like receptor 2 ligands as adjuvants for human Th1 responses   总被引:7,自引:0,他引:7  
Bacterial lipopeptides (bLPs) are increasingly used as adjuvants to activate cell-mediated immune responses to foreign Ags. To explore mechanisms whereby bLPs adjuvant T cell responses, we stimulated human PBMCs with bLPs. We found that bLPs stimulate T cells to proliferate and produce IFN-gamma in an accessory cell-dependent manner and in the absence of exogenous protein Ags. The ability of bLPs to stimulate T cell proliferation was Toll-like receptor 2 dependent and required IL-12, interaction with costimulatory molecules, and MHC proteins. Our data suggest that bLPs adjuvant adaptive Th1 responses by enhancing Ag presentation of endogenous peptides.  相似文献   

7.
A safe and potent adjuvant is needed for development of mucosal vaccines against etiological agents, such as influenza virus, that enter the host at mucosal surfaces. Cytokines are potential adjuvants for mucosal vaccines because they can enhance primary and memory immune responses enough to protect against some infectious agents. For this study, we tested 26 interleukin (IL) cytokines as mucosal vaccine adjuvants and compared their abilities to induce antigen (Ag)-specific immune responses against influenza virus. In mice intranasally immunized with recombinant influenza virus hemagglutinin (rHA) plus one of the IL cytokines, IL-1 family cytokines (i.e., IL-1α, IL-1β, IL-18, and IL-33) were found to increase Ag-specific immunoglobulin G (IgG) in plasma and IgA in mucosal secretions compared to those after immunization with rHA alone. In addition, high levels of both Th1- and Th2-type cytokines were observed in mice immunized with rHA plus an IL-1 family cytokine. Furthermore, mice intranasally immunized with rHA plus an IL-1 family cytokine had significant protection against a lethal influenza virus infection. Interestingly, the adjuvant effects of IL-18 and IL-33 were significantly decreased in mast cell-deficient W/W(v) mice, indicating that mast cells have an important role in induction of Ag-specific mucosal immune responses induced by IL-1 family cytokines. In summary, our results demonstrate that IL-1 family cytokines are potential mucosal vaccine adjuvants and can induce Ag-specific immune responses for protection against pathogens like influenza virus.  相似文献   

8.
Two plasmid vectors encoding the A and B subunits of cholera toxin (CT) and two additional vectors encoding the A and B subunits of the Escherichia coli heat-labile enterotoxin (LT) were evaluated for their ability to serve as genetic adjuvants for particle-mediated DNA vaccines administered to the epidermis of laboratory animals. Both the CT and the LT vectors strongly augmented Th1 cytokine responses (gamma interferon [IFN-gamma]) to multiple viral antigens when codelivered with DNA vaccines. In addition, Th2 cytokine responses (interleukin 4 [IL-4]) were also augmented by both sets of vectors, with the effects of the LT vectors on IL-4 responses being more antigen dependent. The activities of both sets of vectors on antibody responses were antigen dependent and ranged from no effect to sharp reductions in the immunoglobulin G1 (IgG1)-to-IgG2a ratios. Overall, the LT vectors exhibited stronger adjuvant effects in terms of T-cell responses than did the CT vectors, and this was correlated with the induction of greater levels of cyclic AMP by the LT vectors following vector transfection into cultured cells. The adjuvant effects observed in vivo were due to the biological effects of the encoded proteins and not due to CpG motifs in the bacterial genes. Interestingly, the individual LT A and B subunit vectors exhibited partial adjuvant activity that was strongly influenced by the presence or absence of signal peptide coding sequences directing the encoded subunit to either intracellular or extracellular locations. Particle-mediated delivery of either the CT or LT adjuvant vectors in rodents and domestic pigs was well tolerated, suggesting that bacterial toxin-based genetic adjuvants may be a safe and effective strategy to enhance the potency of both prophylactic and therapeutic DNA vaccines for the induction of strong cellular immunity.  相似文献   

9.
Dendritic-tumor heterokaryons generated by electrofusion are highly immunogenic. In animal studies, a single vaccination was therapeutic for tumors established in the lung, skin, and brain. However, effective therapy required a third signal which could be provided by exogenous IL-12 or the agonistic anti-OX-40R monoclonal antibody (mAb). In this study, we investigated the mechanism and mode of actions of these two seemingly distinct adjuvants. In immunotherapy of the MCA205 sarcoma, administration of the neutralizing anti-IL-12 mAb nearly completely blocked the adjuvant effect of IL-12, but had minimal inhibitory effects on anti-OX-40R mAb. By contrast, in vivo administration of the antagonistic anti-OX-40L mAb inhibited the adjuvant effects of both IL-12 and anti-OX-40R mAb. Thus, a common pathway of endogenous OX-40 interaction is critical for the development of a therapeutic immune response. Analysis of the third signal mechanism revealed that in the absence of an adjuvant, vaccination with fusion hybrids led to IL-10 production without eliciting IFN-gamma secreting cells. The addition of IL-12 to vaccination suppressed IL-10 production and initiated sensitization of specific IFN-gamma secreting cells, resulting in a type 1-like antitumor immunity. These findings underscore the significance of the third signal in the design of dendritic cell-based cancer vaccines.  相似文献   

10.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

11.
Vaccine adjuvants: current state and future trends   总被引:14,自引:0,他引:14  
The problem with pure recombinant or synthetic antigens used in modern day vaccines is that they are generally far less immunogenic than older style live or killed whole organism vaccines. This has created a major need for improved and more powerful adjuvants for use in these vaccines. With few exceptions, alum remains the sole adjuvant approved for human use in the majority of countries worldwide. Although alum is able to induce a good antibody (Th2) response, it has little capacity to stimulate cellular (Th1) immune responses which are so important for protection against many pathogens. In addition, alum has the potential to cause severe local and systemic side-effects including sterile abscesses, eosinophilia and myofascitis, although fortunately most of the more serious side-effects are relatively rare. There is also community concern regarding the possible role of aluminium in neurodegenerative diseases such as Alzheimer's disease. Consequently, there is a major unmet need for safer and more effective adjuvants suitable for human use. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally-delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. Each of these areas are highly specialized with their own unique needs in respect of suitable adjuvant technology. This paper reviews the state of the art in the adjuvant field, explores future directions of adjuvant development and finally examines some of the impediments and barriers to development and registration of new human adjuvants.  相似文献   

12.
Safe and potent new adjuvants are needed for vaccines that are administered to mucosal surfaces. This study was performed to determine if interleukin-1alpha (IL-1alpha) combined with other proinflammatory cytokines provided mucosal adjuvant activity for induction of systemic and mucosal anti-human immunodeficiency virus (HIV) peptide antibody when intranasally administered with an HIV peptide immunogen. Nasal immunization of BALB/c mice with 10 microg of an HIV env peptide immunogen with IL-1alpha, IL-12, and IL-18 on days 0, 7, 14, and 28 induced peak serum anti-HIV peptide immunoglobulin G1 (IgG1) and IgA titers of 1:131,072 and 1:7,131, respectively (P = 0.05 versus no adjuvant). The use of cholera toxin (CT) as a mucosal adjuvant induced serum IgG1 and IgA titers of 1:32,768 and 1:776, respectively. The adjuvant combination of IL-1alpha, IL-12, and IL-18 induced anti-HIV peptide IgA titers of 1:1,176, 1:7,131, and 1:4,705 in saliva, fecal extracts and vaginal lavage, respectively. Titers induced by the use of CT as an adjuvant were 1:223, 1:1,176, and 1:675, respectively. These results indicate that the proinflammatory cytokines IL-1alpha, IL-12, and IL-18 can replace CT as a mucosal adjuvant for antibody induction and are important candidates for use as mucosal adjuvants with HIV and other vaccines.  相似文献   

13.
One strategy to induce optimal cellular and humoral immune responses following immunization is to use vaccines or adjuvants that target dendritic cells and B cells. Activation of both cell types can be achieved using specific TLR ligands or agonists directed against their cognate receptor. In this study, we compared the ability of the TLR7/8 agonist R-848, which signals only via TLR7 in mice, with CpG oligodeoxynucleotides for their capacity to induce HIV-1 Gag-specific T cell and Ab responses when used as vaccine adjuvants with HIV-1 Gag protein in mice. Injection of R-848 and CpG oligodeoxynucleotides alone enhanced the innate immune responses in vivo as demonstrated by high serum levels of inflammatory cytokines, including IL-12p70 and IFN-alpha, and increased expression of CD80, CD86, and CD40 on CD11c(+) dendritic cells. By contrast, R-848 was a relatively poor adjuvant for inducing primary Th1 or CD8(+) T cell responses when administered with HIV-1 Gag protein. However, when a TLR7/8 agonist structurally and functionally similar to R-848 was conjugated to HIV-1 Gag protein both Th1 and CD8(+) T cells responses were elicited as determined by intracellular cytokine and tetramer staining. Moreover, within the population of HIV-1 Gag-specific CD8(+) CD62(low) cells, approximately 50% of cells expressed CD127, a marker shown to correlate with the capacity to develop into long-term memory cells. Overall, these data provide evidence that TLR7/8 agonists can be effective vaccine adjuvants for eliciting strong primary immune responses with a viral protein in vivo, provided vaccine delivery is optimized.  相似文献   

14.
IL-12 plays a central role in both innate and acquired immunity and has been demonstrated to potentiate the protective immunity in several experimental vaccines. However, in this study, we show that IL-12 can be detrimental to the immune responses elicited by a plasmid DNA vaccine. Coadministration of the IL-12-expressing plasmid (pIL-12) significantly suppressed the protective immunity elicited by a plasmid DNA vaccine (pE) encoding the envelope protein of Japanese encephalitis virus. This suppressive effect was associated with marked reduction of specific T cell proliferation and Ab responses. A single dose of pIL-12 treatment with plasmid pE in initial priming resulted in significant immune suppression to subsequent pE booster immunization. The pIL-12-mediated immune suppression was dose dependent and evident only when the IL-12 gene was injected either before or coincident with the pE DNA vaccine. Finally, using IFN-gamma gene-disrupted mice, we showed that the suppressive activity of the IL-12 plasmid was dependent upon endogenous production of IFN-gamma. These results demonstrate that coexpression of the IL-12 gene can sometimes produce untoward effects to immune responses, and thus its application as a vaccine adjuvant should be carefully evaluated.  相似文献   

15.
Vaccine adjuvants are substances associated with antigens that are fundamental to the formation of an intense, durable, and fast immune response. In this context, the use of vaccine adjuvants to generate an effective cellular immune response is crucial for the design and development of vaccines against visceral leishmaniasis. The objective of this study was to evaluate innate inflammatory response induced by the vaccine adjuvants saponin (SAP), incomplete Freund's adjuvant (IFA), and monophosphoryl lipid A (MPL). After a single dose of adjuvant was injected into the skin of mice, we analyzed inflammatory reaction, selective cell migration, and cytokine production at the injection site, and inflammatory cell influx in the peripheral blood. We found that all vaccine adjuvants were able to promote cell recruitment to the site without tissue damage. In addition, they induced selective migration of neutrophils, macrophages, and lymphocytes. The influx of neutrophils was notable at 12 h in all groups, but at other time points it was most evident after inoculation with SAP. With regard to cytokines, the SAP led to production of interleukin (IL)-2, IL-6, and IL-4. IFA promoted production of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-17, IL-4, and IL-10. We also observed that MPL induced high production of IL-2, TNF-α, and IFN-γ, in addition to IL-6, IL-17, and IL-10. In peripheral blood, values of certain cell populations in the local response changed after stimulation. Our data demonstrate that the three vaccine adjuvants stimulate the early events of innate immune response at the injection site, suggesting their ability to increase the immunogenicity of co-administered antigens. Moreover, this work provides relevant information about elements of innate and acquired immune response induced by vaccine adjuvants administered alone.  相似文献   

16.
Host resistance to the intracellular protozoan Leishmania major is highly dependent on IL-12 production by APCs. Genetically resistant C57BL/6 mice develop IL-12-mediated Th1 immune response dominated by IFN-gamma and exhibit only small cutaneous lesions that resolve spontaneously. In contrast, because of several genetic differences, BALB/c mice develop an IL-4-mediated Th2 immune response and a chronic mutilating disease. Myeloid differentiation marker 88 (MyD88) is an adaptator protein that links the IL-1/Toll-like receptor family to IL-1R-associated protein kinase. Toll-like receptors recognize pathogen associated molecular patterns and are crucially implicated in the induction of IL-12 secretion by APC. The role of MyD88 protein in the development of protective immune response against parasites is largely unknown. Following inoculation of L. major, MyD88(-/-) C57BL/6 mice presented large footpad lesions containing numerous infected cells and frequent mutilations. In response to soluble Leishmania Ag, cells from lesion-draining lymph node showed a typical Th2 profile, similar to infected BALB/c mice. IL-12p40 plasma level collapses in infected MyD88(-/-) mice compared with infected wild-type C57BL/6 mice. Importantly, administration of exogenous IL-12 rescues L. major-infected MyD88(-/-) mice, demonstrating that the susceptibility of these mice is a direct consequence of IL-12 deficiency. In conclusion, MyD88-dependent pathways appear essential for the development of the protective IL-12-mediated Th1 response against the Leishmania major parasite. In absence of MyD88 protein, infected mice develop a nonprotective Th2 response.  相似文献   

17.
LeIF, a Leishmania protein similar to the eukaryotic initiation factor eIF4A, which is a prototype of the DEAD box protein family, was originally described as a Th1-type natural adjuvant and as an antigen that induces an IL12-mediated Th1 response in the peripheral blood mononuclear cells of leishmaniasis patients. This study aims to characterize this protein by comparative biochemical and genetic analysis with eIF4A in order to assess its potential as a target for drug development. We show that a His-tagged, recombinant, LeIF protein of Leishmania infantum, which was purified from Escherichia coli, is both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described previously for other members of the DEAD box helicase protein family. In vivo experiments show that the LeIF gene cannot complement the deletion of the essential TIF1 and TIF2 genes in the yeast Saccharomyces cerevisiae that encode eIF4A. In contrast, expression of LeIF inhibits yeast growth when endogenous eIF4A is expressed off only one of its two encoding genes. Furthermore, in vitro binding assays show that LeIF interacts with yeast eIF4G. These results show an unproductive interaction of LeIF with translation initiation factors in yeast. Furthermore, the 25 amino terminal residues were shown to enhance the ability of LeIF to interfere with the translation machinery in yeast.  相似文献   

18.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

19.
Aluminum is inevitable component of many vaccines. The benefit of the vaccines is undeniable but effects of aluminum toxicity might be underestimated and neglected. In this review, we highlighted the mechanims of aluminum toxicity, which is still in debate. So far, all the papers that disscused the adverse aluminum effects pointed two mechanisms responsible for Al toxicity, direct Al toxicity and aluminum induced cell damage via the oxidative metabolism. According to our knowledge, which is based on basic principles of biochemistry and inorganic chemistry, we suggested that aluminum highly interferes with iron metabolism eventually resulting in iron-mediated cell damage. More importantly, in this paper, we offered easily feasible solutions, in order to avoid aluminum toxicity in the future. We suggest that as it once was, Calcium Phosphate again to be used as the adjuvant or better solution that the vaccine adjuvants should be based on zinc compounds or even better would be non-metal adjuvants, such as microcrystalline tyrosine and monosodium urate. Until an adequate adjuvant is provided, we suggest instant postponement of vaccination with vaccines which use aluminum as the adjuvant until the 12 months of age.  相似文献   

20.
Aluminium compounds for use in vaccines   总被引:1,自引:0,他引:1  
Aluminium adjuvants are the most widely used adjuvants in both human and veterinary vaccines. These adjuvants have been used in practical vaccination for more than 60 years and are generally recognized as safe and as stimulators of Th2 immunity. The present review gives a short introduction to the pioneering research at the start of the use of aluminium compounds as adjuvants, including references on the chemistry of these compounds. Analytical methods for identifying the most commonly used aluminium compounds, such as boehmite and aluminium hydroxyphosphate, are mentioned. Emphasis is placed on the important factors for antigen adsorption and on the latest work using gene-deficient mice in the research of the mechanism of aluminium adjuvants in terms of cytokine and T-cell subset stimulation. Key references on the ability of aluminium adjuvants to stimulate IgE and also in vivo clearing of aluminium adjuvants are discussed. Furthermore, the review addresses the issue of local reactions in the context of injection route and local tissue disturbance. Possible new applications of aluminium adjuvants in, for example, combined aluminium-adsorbed protein and DNA oligonucleotide vaccines as well as the possible use of aluminium adjuvants in combination with IL-12 to stimulate Th1-type immune responses are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号