首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the effect of phorbol esters and cAMP elevating compounds on tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) secretion. Phorbol esters induce a time- and dose-dependent increase in tPA release from endothelial cells, while forskolin, isobutylmethylxanthine, dibutyryl cAMP, and 8-bromo-cAMP had no significant stimulatory effect on tPA secretion. However, elevation of cAMP simultaneously with phorbol ester treatment potentiated the phorbol ester-induced release of tPA 6 times from 22.2 ng/ml with phorbol myristate acetate (PMA) alone to 122.1 ng/ml (PMA and forskolin). Potentiation was dose-dependent (half-maximal potentiation = 4 microM forskolin), and tPA release was enhanced at all stimulatory concentrations of PMA with no change in the PMA concentrations causing half-maximal or maximum tPA release. The kinetics of release was also similar in PMA versus PMA-forskolin-treated cells. A 4-h delay was observed, enhanced release was transient, and was followed by the onset of a refractory period. In contrast, elevation of cAMP reduced constitutive secretion of PAI-1 by 30-40% and prevented the increase in PAI-1 secretion stimulated by PMA. Elevated cAMP also decreased the rate of PAI-1 deposition into the endothelial substratum. These studies indicate that activation of a cAMP-dependent pathway(s) in coordination with phorbol ester-induced responses plays a central role in modifying the tPA and PAI-1 secretion from endothelial cells, leading to a profibrinolytic state in the endothelial environment.  相似文献   

2.
We have examined the effect of tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) on the murine B cell leukemia BCL-1 and its in vitro adapted derivative CW.13.20. Phorbol esters, including PMA and phorbol dibutyrate (PDBu), were potent inhibitors of BCL-1 IgM secretion induced by either LPS or lymphokines; half-maximal inhibition was obtained with 0.1 nM PMA and 0.8 nm PDBu. The inhibitory action of PDBu on BCL-1 cells was reversible for over 1 hr, but after 5 hr 70% of the inhibition was irreversible. Irreversible inhibition could be blocked by cycloheximide, suggesting a requirement for protein synthesis. The specificity of PDBu inhibition was examined by comparing the patterns of protein synthesis in PDBu-treated and control BCL-1 cells. Total incorporation of [35S]methionine into protein by BCL-1 cells cultured in the presence of PDBu was similar to that of untreated cells. Analysis of radiolabeled proteins by SDS-PAGE and autoradiography revealed no consistent changes in the pattern of protein synthesis except at those positions corresponding to the heavy and light chains of IgM. Immunoprecipitation with an affinity-purified anti-IgM indicated that PDBu inhibited the increased synthesis of heavy and light chain that follows stimulation by lymphokine but did not diminish control IgM synthesis. Induced IgM secretion from CW.13.20 cells was also inhibited by phorbol esters, indicating a direct action on B cells. Delaying the addition of phorbol ester relative to lymphokine or LPS by 24 hr significantly reduced inhibition of induced IgM secretion from both BCL-1 and CW.13.20 cells. This suggests that phorbol esters specifically interfere with the signal for induction of IgM secretion by both lymphokine and LPS.  相似文献   

3.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

4.
To investigate the possible role of protein kinase C activation in the desensitization of inositol phosphate production in endothelial cells we compared desensitization induced by agonists to that induced by the phorbol ester TPA. While histamine or thrombin induced desensitization of inositol phosphate production is homologous TPA induced desensitization is heterologous. The protein kinase C inhibitor H-7 reduced TPA desensitization but had no effect on the agonist induced desensitization. While downregulation of protein kinase C by long term (24 hr) treatment of the cells with TPA reduced the desensitization mediated by short term TPA-treatment it did not affect the agonist induced desensitization. These results suggest that desensitization of inositol phosphate production after agonist stimulation of endothelial cells is not mediated by protein kinase C.  相似文献   

5.
The level of occupancy of a single class of high-affinity (3H)-phorbol 12, 13-dibutyrate (PDBu) binding sites (Kd = 26 nM) in quiescent Swiss 3T3 cells was correlated with the dose of PDBu required to stimulate rapid (increase in 86Rb uptake, decrease in epidermal growth factor receptor affinity) and long-term (induction of 2-deoxyglucose uptake, initiation of DNA synthesis) events of the proliferative response. Further, structural analogues of PDBu showed identical relative potencies in the inhibition of (3H)-PDBu binding and stimulation of DNA synthesis. Finally, prolonged (24-hour) incubation of Swiss 3T3 or whole mouse embryo fibroblasts with 400 nM PDBu led to a decrease in the number of (3H)-PDBu binding sites (down-regulation) with a parallel loss of rapid and long-term responses of the cells to PDBu (desensitization). These findings indicate that the high-affinity (3H)-PDBu binding sites mediate the mitogenic effects of phorbol esters in fibroblastic cells.  相似文献   

6.
Previous work has demonstrated that pre-treatment of platelets with phorbol esters that activate protein kinase C eg phorbol 12-myristate 13-acetate (PMA) results in an inhibition of inositol phospholipid breakdown and granule secretion induced by physiological agonists such as thrombin and collagen. In the present study, the effect of pre-treatment with PMA on granule secretion and [32P]-phosphatidate (PA) formation induced by the stable GTP analogue, guanosine 5'-[gamma thio] triphosphate (GTP gamma S) was examined in saponin-permeabilized platelets. A low concentration of PMA ie 1.6nM, that did not induce significant 5-hydroxytryptamine (5HT) secretion on its own, but inhibited low-dose thrombin-induced 5HT secretion totally and PA formation by 30-40% in intact as well as permeabilised platelets was chosen. Our results demonstrate a lack of inhibition of GTP gamma S (40 microM)-induced 5HT secretion by PMA in permeabilised platelets, despite significant inhibition (70%) of PA formation, suggesting that apart from the diacylglycerol pathway of secretion which may be common to thrombin and GTP analogues, secretion induced by physiological agonists such as thrombin may involve another mechanism that is inhibitable by phorbol esters.  相似文献   

7.
An early event in phorbol ester-induced maturation of chronic lymphocytic leukemic (CLL) B cells is a membrane change characterized by the inactivation of a mouse erythrocyte receptor (MER). This event, the MER-switch, is quantified by inhibition of rosette formation. By using [3H]phorbol dibutyrate ([3H]PDBu), both to stimulate MER-switch and assay binding of PDBu to CLL cells, it was shown that MER-switch was an irreversible, time-dependent event which occurred some time after maximal binding of [3H]PDBu to cells. Two classes of binding sites, one of high affinity (Kd 1 to 2 nM) at low frequency (1.5 to 5 X 10(4) sites per cell), and a lower affinity site (Kd 33 to 50 nM) of higher frequency (2 to 3.5 X 10(5) sites per cell), were detected. Binding of [3H]PDBu was inhibited by phorbol ester analogs that stimulated MER-switch, but not by inactive analogs. This, and the similarity in shapes of the binding and rosette inhibition curves over a range of concentrations, suggests that stimulation of MER-switch by phorbol esters is due to this specific binding. The phorbol ester receptor and MER are distinct because MER-ve T cells and MER-ve atypical B cells from a patient with CLL had both classes of PDBu receptor. Solubilized MER did not bind [3H]PDBu. Time-course studies, and the irreversibility of the switch, despite removal of most of the bound [3H]PDBu, indicate that inhibition of rosetting is not due to competitive or steric hindrance by phorbol esters. Equivalent activities of soluble MER were released from fresh and phorbol ester-treated CLL cells, indicating a rearrangement of MER, rather than a loss. A supernatant of phytohemagglutinin-stimulated human spleen cells also induced MER-switch in CLL lymphocytes, suggesting that a lymphokine may be a natural inducer of this event.  相似文献   

8.
In washed human platelets and in HL60 granulocytes phorbol myristate acetate (PMA, 1-2000nM) synergised with threshold concentrations of secretogogues to induce a sustained maximum secretory response. Likewise, superoxide production from HL60 cells maintained a maximal response at PMA concentrations between 30-300nM. At concentrations up to 10nM PMA also augmented calcium ionophore, A23187, stimulated histamine release from rat peritoneal mast cells. However, in the mast cell PMA concentrations above 10nM reduced maximum histamine release in a dose-dependent manner.  相似文献   

9.
Exposure of a nontransformed, continuous line of epithelial cells derived from rat liver (WB cells) to epidermal growth factor, angiotensin II, [Arg8]vasopressin, and epinephrine resulted in rapid accumulation of the inositol phosphates (InsP) InsP1, InsP2, and InsP3. Although short-term (5-60 min) pretreatment of WB cells with the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly attenuated InsP accumulation in response to all agonists, the inhibitory effects on the InsP response were lost after 2 h incubation with PMA; and, with extended (6-24 h) preincubation, a time-dependent potentiation of the InsP response to angiotensin II, epidermal growth factor and [Arg8]vasopressin was observed. The InsP response during a 15-min challenge with angiotensin II in cells pretreated for 18 h with 600 nM and 10 microM PMA was increased by 2-3-fold and 4-6-fold, respectively. Long-term (18 h) treatment with 600 nM and 10 microM PMA caused a similar 90-100% loss of measurable Ca2+/phospholipid-dependent enzyme (protein kinase C) activity in cytosolic and soluble particulate fractions. The effects of long-term PMA pretreatment do not represent a general enhancement of hormone responsiveness since the InsP response to epinephrine was not affected. In control cells, the InsP response to angiotensin II and epinephrine desensitized very rapidly. Long-term pretreatment with PMA greatly reduced the contribution of agonist-induced desensitization to the angiotensin II response; in contrast, the extent of desensitization occurring during incubation of WB cells with epinephrine was unaltered by long-term treatment with PMA suggesting that an additional mechanism may be involved in alpha 1-adrenergic receptor desensitization. No PMA-induced change in resting levels of [3H]phosphoinositides or the metabolism of exogenous [3H]inositol 1,4,5-trisphosphate by WB homogenates occurred. Stimulation of InsP formation in intact cells by NaF and activation of phospholipase C by GTP gamma S in membranes both were unaltered by short-term or long-term PMA pretreatment. These data are consistent with the idea that following long-term treatment of WB cells with PMA, the occurrence of agonist-induced desensitization of receptors linked to the phosphoinositide/Ca2+ signaling system is reduced, apparently at least in part due to the loss of contribution of a negative feedback regulatory role of protein kinase C.  相似文献   

10.
Two of the most effective stimuli of gastrin release from human antral G cells are bombesin and phorbol esters. Both agonists result in activation of the protein kinase C family of isozymes, however, the exact contribution of protein kinase C to the resultant release of gastrin has been difficult to assess, possibly due to the presence of multiple protein kinase C isozymes in the G cells. The results of the present study demonstrated that the human antral G cells expressed 6 protein kinase C isozymes alpha, gamma, theta, epsilon, zeta, and mu. Of these protein kinase C, gamma and theta were translocated by stimulation of the cells by either 10 nM bombesin or 1 nM phorbol ester. Inhibition of protein kinase Cmu (localized to the Golgi complex) did not decrease bombesin-stimulated gastrin release indicating that this isozyme was not involved in the secretory process. The use of selective antagonists of the calcium-sensitive conventional protein kinase C subgroup resulted in an increase in bombesin-stimulated gastrin release and indicated that protein kinase Cgamma was involved in the desensitization of the bombesin response.  相似文献   

11.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

12.
Fibroblasts represent one of the in vivo sites of insulin-like growth factor-I (IGF-I) production. In this study rat dermal fibroblasts in culture were used as a model system to assess the effect of activation of protein kinase-C on the levels of the mRNAs encoding IGF-I and another growth factor, basic fibroblast growth factor (bFGF). IGF-I and bFGF mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of cells in serum-free medium containing 0.25% BSA (MEM + BSA) with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) decreased IGF-I and increased bFGF mRNA levels in a time- and dose-dependent fashion. The peak effect of 100 nM PMA on IGF-I mRNA levels occurred at 9 h, whereas the peak effect on bFGF mRNA levels occurred after 3 h of incubation. In dose-response studies, half-maximal inhibition of IGF-I mRNA levels was achieved with approximately 0.08 nM PMA, while half-maximal stimulation of bFGF mRNA levels was achieved with approximately 3 nM PMA. Inhibition of protein synthesis with cycloheximide abrogated the effect of PMA on bFGF mRNA levels, but only partially inhibited the effect of PMA on IGF-I mRNA levels. Studies employing sphingosine or staurosporine to inhibit protein kinase-C or preincubation in high doses of PMA to down-regulate protein kinase-C suggested that the effect of PMA on IGF-I and bFGF mRNA levels was mediated by activation of protein kinase-C, although both staurosporine and sphingosine had independent effects on the levels of these mRNAs and down-regulation of protein kinase-C had a sustained effect on IGF-I mRNA levels. Ligands known to activate protein kinase-C were then tested. Treatment of cells with 100 micrograms/ml of the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol decreased IGF-I mRNA levels to 25% and increased bFGF mRNA levels to 520% of the level present in cells maintained in MEM + BSA. Treatment of cells with thrombin or bradykinin also decreased IGF-I mRNA levels and increased bFGF mRNA levels, but whereas the effect of thrombin on IGF-I mRNA levels was marked, the effect of bradykinin was minimal, and whereas the effect of thrombin on bFGF mRNA levels was sustained, the effect of bradykinin was transient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Regulation of motility in bovine brain endothelial cells   总被引:6,自引:0,他引:6  
Scatter factor (SF) is a fibroblast-derived cytokine which stimulates motility of epithelial and vascular endothelial cells. We used a quantitative assay based on migration of cells from microcarrier beads to flat surfaces to study the regulation of motility in bovine brain endothelial cells (BBEC). Peptide growth factors (EGF, ECGF, basic FGF) did not stimulate migration. Tumor promoting phorbol esters (PMA, PDD) markedly stimulated migration, while inactive phorbol esters (4a-PDD, phorbol-13,20-diacetate) did not affect migration. Both SF- and PMA-stimulated migration were inhibited by 1) TGF-beta; 2) protein kinase inhibitors (e.g., staurosporine, K-252a); 3) activators of the adenylate cyclase signaling pathway (e.g., dibutyryl cyclic AMP, theophylline); 4) cycloheximide; and 5) anti-cytoskeleton agents (e.g., cytochalasin B, colcemid). However, PMA and SF pathways were distinguishable: 1) PMA induced additional migration at saturating SF concentrations; 2) the onset of migration-stimulation was immediate for PMA and delayed for SF; and 3) down-modulation of protein kinase C (PKC) ablated PMA but not SF responsiveness. Assessment of PKC by (3H)-phorbol ester (PDBu) binding and by immunoblot showed 1) scatter factor does not cause significant redistribution or down-modulation of PDBu binding or alpha-PKC; and 2) PDBu mediates redistribution and down-modulation of both binding and alpha-PKC. These findings suggest two pathways for BBEC motility: a PKC-dependent pathway and an SF-stimulated/PKC-independent pathway.  相似文献   

14.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

15.
Treatment of human endothelial cells with thrombin, histamine, or dioctanoylglycerol (DiC8), a synthetic diacylglycerol, resulted in the rapid and transient phosphorylation of a Mr = 29,000 protein (P29) in a dose-dependent manner. Various tumor promoters also promoted P29 phosphorylation while the adenylate cyclase activator, forskolin, did not. The level of phosphorylation with all three agonists was similar (2.5-4 fold), and analysis of P29 by two-dimensional gel electrophoresis revealed identical patterns in each case. Receptor specificity was demonstrated for the histamine-stimulated changes; pyrilamine (10(-6) M; H1) but not cimetidine (10(-4); H2) blocked the response. The thrombin effect was active site-dependent. Phosphorylation induced by thrombin and histamine occurred within 1 min, peaked between 5 and 10 min, and returned to control levels by 1 h. DiC8-induced phosphorylation occurred more slowly but was also reduced by 1 h while phorbol ester treatment prolonged phosphorylation for at least 4 h. Treatment of these cells with thrombin or histamine for 1 h desensitized P29 to further phosphorylation by the homologous agonist although secondary phosphorylation could occur with heterologous compounds. However, if the primary agonist was removed following the onset of a desensitized state, secondary phosphorylation of P29 could be stimulated by the same compound. These same results were observed with two other phosphoproteins Mr = 18,000 (P18) and 80,000 (P80) which became more highly phosphorylated in response to thrombin treatment and with histamine/thrombin-stimulated prostaglandin I2 production. In contrast, homologous down-regulation of P29 phosphorylation was not observed with DiC8-treated cells, and the decline in phosphorylated P29 was associated with the loss of functional DiC8. The protein kinase inhibitors staurosporine and H-7 blocked P18 and P80 phosphorylation by thrombin but had no effect on P29 phosphorylation by histamine, thrombin, or DiC8 suggesting distinct pathways leading to the phosphorylation of these different proteins. These data suggest that multiple and independent thrombin/histamine-induced events are susceptible to receptor occupancy-dependent homologous down-regulation.  相似文献   

16.
The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma-derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha-phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become differentiated to organize into nongrowing tubes.  相似文献   

17.
Tumor-promoting phorbol esters stimulate tissue plasminogen activator (tPA) release from human endothelial cells, and simultaneous elevation of cyclic AMP potentiates this response 5-fold (Santell, L., and Levin, E. G. (1988) J. Biol. Chem. 263, 16802-16808). A similar effect on tPA mRNA was observed, with phorbol myristate acetate inducing a 3.5-fold increase in steady state tPA mRNA levels and forskolin enhancing that increase to 25-fold. Peak levels occurred at 8 h after agonist addition and returned to baseline levels by 16 h. As was found with tPA antigen secretion, delayed addition of forskolin reduced the level of potentiation, and, at 6 h after phorbol 12-myristate 13-acetate (PMA), forskolin was no longer effective. The protein synthesis inhibitor cycloheximide did not inhibit the rise in tPA mRNA levels in response to PMA/forskolin nor the decline in mRNA levels between 8 and 12 h. However, peak levels (8 h) were approximately 1.5-fold higher than in cultures not treated with cycloheximide. The effect of two inhibitors of protein kinases, H-7 and staurosporine, on PMA-induced tPA antigen secretion and tPA mRNA levels were examined. H-7 and staurosporine inhibited PMA, and PMA/forskolin induced tPA secretion in a dose-dependent manner. This effect was time-dependent; the inhibitory effect was reduced with delayed H-7 addition, and, by 6 h after PMA treatment, no inhibition was observed. H-7 and staurosporine also inhibited the PMA/forskolin-induced increase in tPA mRNA levels and were less effective the later they were added. The same time-dependent effect on the potentiation of PMA-induced tPA mRNA levels by forskolin was observed. Again, delayed addition reduced the effect, and, by 6 h, potentiation was absent. The results of this study indicate that changes in mRNA levels in response to PMA and PMA/forskolin precede and determine those that occur to tPA antigen secretion. In addition, the maximal response is dependent upon the prolonged activation of an H-7- and cAMP-sensitive pathway.  相似文献   

18.
Thrombin stimulates c-sis gene expression in microvascular endothelial cells   总被引:27,自引:0,他引:27  
We have determined whether expression of the c-sis gene product, platelet-derived growth factor (PDGF), is regulated in cultured renal microvascular endothelial cells by factors to which vascular endothelial cells may be exposed at sites of perivascular cellular proliferation. Thrombin exposure increased endothelial cell levels of c-sis message by 3-5-fold over a time course that peaked at 4 h after exposure. Similarly, thrombin-exposed microvascular endothelial cells released increased amounts of PDGF activity into their media. The thrombin effect was not mediated through the proteolytic activity of thrombin, as proteolytically inactive thrombin stimulated the c-sis expression as well as native thrombin. This stimulation was mimicked by exposure of cells to biologically active phorbol esters, suggesting that thrombin action may be mediated through activation of kinase C (Ca2+/phospholipid-dependent enzyme). Thus, thrombin regulates the expression and release of PDGF activity from endothelial cells in culture and may act in vivo to stimulate mitogen release from endothelial cells, thereby inducing proliferation of perivascular cells.  相似文献   

19.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

20.
We have studied the influence of perturbation of cultured human umbilical vein endothelial cells on the distribution of the von Willebrand factor. As shown previously, short-term (less than 1 hr) treatment of endothelial cells with the phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) or thrombin resulted in the release of cellular stored von Willebrand factor. Long-term treatment with PMA or thrombin evoked a distinct change in the endothelial cell distribution of von Willebrand factor, evident 24 to 48 hrs after exposure. Whereas the contents of the von Willebrand factor storage sites in the cells were gradually restored within 48 hrs, enhanced amounts of von Willebrand factor were secreted into the medium. However, PMA did not increase the endothelial cell contents of mRNA encoding for von Willebrand factor. The number as well as the size of von Willebrand factor storage granules in the endothelial cells increased after exposure to the phorbol ester, as determined by immunofluorescence microscopy. A second treatment with PMA or thrombin, 48 hrs after cells had been stimulated with these agents, resulted again in the instantaneous release of von Willebrand factor. PMA and thrombin caused a decrease in the von Willebrand factor contents of the extracellular matrix. Pulse-chase experiments revealed that PMA blocked the deposition of von Willebrand factor in the subendothelium, whereas PMA did not affect the degradation of matrix von Willebrand factor. Thus, perturbation of endothelial cells changes the cellular distribution of von Willebrand factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号