首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Drosophila embryonic epidermis has been a key model for understanding the establishment of cell type diversity across a cellular field. During segmental patterning, distinct signaling territories are established that employ either the Hedgehog, Spitz, Serrate or Wingless ligands. How these pathways control segmental pattern is not completely clear. One major decision occurs as cells are allocated to differentiate either smooth cuticle or denticle type cuticle. This allocation is based on competition between Wingless signaling and Spitz, which activates the Epidermal Growth Factor Receptor (EGFR). Here we show that a main role for Serrate-Notch signaling is to adjust the Spitz signaling domain. Serrate accomplishes this task by activating Notch in a discrete domain, the main purpose of which is to broaden the spatially regulated expression of Rhomboid. This adjusts the breadth of the source for Spitz, since Rhomboid is necessary for the production of active Spitz. We also show that the Serrate antagonist, fringe, must temper Notch activity to insure that the activation of the EGFR is not too robust. Together, Serrate and Fringe modulate Notch activation to generate the proper level of EGFR activation. If Serrate-Notch signaling is absent, the denticle field narrows while the smooth cell field expands, as judged by the expression of the denticle field determinant Ovo/Shaven baby. This establishes one important role for the Serrate signaling territory, which is to define the extent of denticle field specification.  相似文献   

2.
Specialized groups of cells known as organizers govern the establishment of cell type diversity across cellular fields. Segmental patterning within the Drosophila embryonic epidermis is one paradigm for organizer function. Here cells differentiate into smooth cuticle or distinct denticle types. At parasegment boundaries, cells expressing Wingless confront cells co-expressing Engrailed and Hedgehog. While Wingless is essential for smooth cell fates, the signals that establish denticle diversity are unknown. We show that wg mutants have residual mirror-symmetric pattern that is due to an Engrailed-dependent signal specifying anterior denticle fates. The Engrailed-dependent signal acts unidirectionally and Wg activity imposes this asymmetry. Reciprocally, the Engrailed/Hedgehog interface imposes asymmetry on Wg signaling. Thus, a bipartite organizer, with each signal acting essentially unidirectionally, specifies segmental pattern.  相似文献   

3.
Cho KO  Chern J  Izaddoost S  Choi KW 《Cell》2000,103(2):331-342
The Drosophila eye disc is a sac of single layer epithelium with two opposing sides, the peripodial membrane (PM) and the disc proper (DP). Retinal morphogenesis is organized by Notch signaling at the dorsoventral (DV) boundary in the DP. Functions of the PM in coordinating growth and patterning of the DP are unknown. We show that the secreted proteins, Hedgehog, Wingless, and Decapentaplegic, are expressed in the PM, yet they control DP expression of Notch ligands, Delta and Serrate. Peripodial clones expressing Hedgehog induce Serrate in the DP while loss of peripodial Hedgehog disrupts disc growth. Furthermore, PM cells extend cellular processes to the DP. Therefore, peripodial signaling is critical for eye pattern formation and may be mediated by peripodial processes.  相似文献   

4.
5.
Smoothened translates Hedgehog levels into distinct responses   总被引:3,自引:0,他引:3  
  相似文献   

6.
The two signalling proteins, Wingless and Hedgehog, play fundamental roles in patterning cells within each metamere of the Drosophila embryo. Within the ventral ectoderm, Hedgehog signals both to the anterior and posterior directions: anterior flanking cells express the wingless and patched Hedgehog target genes whereas posterior flanking cells express only patched. Furthermore, Hedgehog acts as a morphogen to pattern the dorsal cuticle, on the posterior side of cells where it is produced. Thus responsive embryonic cells appear to react according to their position relative to the Hedgehog source. The molecular basis of these differences is still largely unknown. In this paper we show that one component of the Hedgehog pathway, the Fused kinase accumulates preferentially in cells that could respond to Hedgehog but that Fused concentration is not a limiting step in the Hedgehog signalling. We present direct evidence that Fused is required autonomously in anterior cells neighbouring Hedgehog in order to maintain patched and wingless expression while Wingless is in turn maintaining engrailed and hedgehog expression. By expressing different components of the Hedgehog pathway only in anterior, wingless-expressing cells we could show that the Hedgehog signalling components Smoothened and Cubitus interruptus are required in cells posterior to Hedgehog domain to maintain patched expression whereas Fused is not necessary in these cells. This result suggests that Hedgehog responsive ventral cells in embryos can be divided into two distinct types depending on their requirement for Fused activity. In addition, we show that the morphogen Hedgehog can pattern the dorsal cuticle independently of Fused. In order to account for these differences in Fused requirements, we propose the existence of position-specific modulators of the Hedgehog response.  相似文献   

7.
In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells.  相似文献   

8.
9.
The signaling molecules Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) function as morphogens and organize wing patterning in Drosophila. In the screen for mutations that alter the morphogen activity, we identified novel mutants of two Drosophila genes, sister of tout-velu (sotv) and brother of tout-velu (botv), and new alleles of tout-velu (ttv). The encoded proteins of these genes belong to an EXT family of proteins that have or are closely related to glycosyltransferase activities required for biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutation in any of these genes impaired biosynthesis of HSPGs in vivo, indicating that, despite their structural similarity, they are not redundant in the HSPG biosynthesis. Protein levels and signaling activities of Hh, Dpp and Wg were reduced in the cells mutant for any of these EXT genes to a various degree, Wg signaling being the least sensitive. Moreover, all three morphogens were accumulated in the front of EXT mutant cells, suggesting that these morphogens require HSPGs to move efficiently. In contrast to previous reports that ttv is involved exclusively in Hh signaling, we found that ttv mutations also affected Dpp and Wg. These data led us to conclude that each of three EXT genes studied contribute to Hh, Dpp and Wg morphogen signaling. We propose that HSPGs facilitate the spreading of morphogens and therefore, function to generate morphogen concentration gradients.  相似文献   

10.
We investigate a reaction–diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction–diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction–diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.  相似文献   

11.
Patterning of the developing limbs by the secreted signaling proteins Wingless, Hedgehog and Dpp takes place while the imaginal discs are growing rapidly. Cells born in regions of high ligand concentration may be displaced through growth to regions of lower ligand concentration. We have used a novel lineage-tagging method to address the reversibility of cell fate specification by morphogen gradients. We find that responses to Hedgehog and Dpp in the wing disc are readily reversible. In the leg, we find that cells readily adopt more distal fates, but do not normally shift from distal to proximal fate. However, they can do so if given a growth advantage. These results indicate that cell fate specification by morphogen gradients remains largely reversible while the imaginal discs grow. In other systems, where growth and patterning are uncoupled, nonreversible specification events or 'ratchet' effects may be of functional significance.  相似文献   

12.
13.
Hedgehog (Hh) molecules play critical roles during development as a morphogen, and therefore their distribution must be regulated. Hh proteins undergo several modifications that tether them to the membrane. We have previously identified tout velu (ttv), a homolog of the mammalian EXT tumor suppressor gene family, as a gene required for movement of Hh. In this paper, we present in vivo evidence that ttv is involved in heparan sulfate proteoglycan (HSPG) biosynthesis, suggesting that HSPGs control Hh distribution. In contrast to mutants in other HSPG biosynthesis genes, the activity of the HSPG-dependent FGF and Wingless signaling pathways are not affected in ttv mutants. This demonstrates an unexpected level of specificity in the regulation of the distribution of extracellular signals by HSPGs.  相似文献   

14.
The secreted signaling protein Wingless acts as a morphogen to pattern the imaginal discs of Drosophila. Here we report identification of a secreted repressor of Wingless activity, which we call Notum. Loss of Notum function leads to increased Wingless activity by altering the shape of the Wingless protein gradient. When overexpressed, Notum blocks Wingless activity. Notum encodes a member of the alpha/beta-hydrolase superfamily, with similarity to pectin acetylesterases. We present evidence that Notum influences Wingless protein distribution by modifying the heparan sulfate proteoglycans Dally-like and Dally. High levels of Wingless signaling induce Notum expression. Thus, Wingless contributes to shaping its own gradient by regulating expression of a protein that modifies its interaction with cell surface proteoglycans.  相似文献   

15.
The highly conserved Wnt family of growth factors is essential for generating embryonic pattern in many animal species [1]. In the fruit fly Drosophila, most Wnt-mediated patterning is performed by a single family member, Wingless (Wg), acting through its receptors Frizzled (Fz) and DFrizzled2 (Dfz2). In the ventral embryonic epidermis, Wg signaling generates two different cell-fate decisions: the production of diverse denticle types and the specification of naked cuticle separating the denticle belts. Mutant alleles of wg disrupt these cellular decisions separately [2], suggesting that some aspect of ligand-receptor affinity influences cell-fate decisions, or that different receptor complexes mediate the distinct cellular responses. Here, we report that overexpression of Dfz2, but not Fz, rescues the mutant phenotype of wgPE2, an allele that produces denticle diversity but no naked cuticle. Fz was able to substitute for Dfz2 only under conditions where the Wg ligand was present in excess. The wgPE2 mutant phenotype was also sensitive to the dosage of glycosaminoglycans, suggesting that the mutant ligand is excluded from the receptor complex when proteoglycans are present. We conclude that wild-type Wg signaling requires efficient interaction between ligand and the Dfz2-proteoglycan receptor complex to promote the naked cuticle cell fate.  相似文献   

16.
During development, diffusible ligands, known as morphogens, are thought to move across fields of cells, regulating gene expression in a concentration dependent manner. The case for morphogens has been convincingly made for the Decapentapleigic (Dpp), Wingless (Wg) and Hedgehog (Hh) proteins in the Drosophila wing. In each case, the concentration of the morphogen's receptor plays an important role in shaping the morphogen gradient, through influencing ligand transport and/or stability. However, the relationships between each ligand/receptor pair are different. The role of heparan sulfated proteoglycans, endocytosis and novel exovesicles called argosomes in regulating morphogen distribution will also be discussed.  相似文献   

17.
The posteriorly expressed signaling molecules Hedgehog and Decapentaplegic drive photoreceptor differentiation in the Drosophila eye disc, while at the anterior lateral margins Wingless expression blocks ectopic differentiation. We show here that mutations in axin prevent photoreceptor differentiation and lead to tissue overgrowth and that both these effects are due to ectopic activation of the Wingless pathway. In addition, ectopic Wingless signaling causes posterior cells to take on an anterior identity, reorienting the direction of morphogenetic furrow progression in neighboring wild-type cells. We also show that signaling by Decapentaplegic and Hedgehog normally blocks the posterior expression of anterior markers such as Eyeless. Wingless signaling is not required to maintain anterior Eyeless expression and in combination with Decapentaplegic signaling can promote its downregulation, suggesting that additional molecules contribute to anterior identity. Along the dorsoventral axis of the eye disc, Wingless signaling is sufficient to promote dorsal expression of the Iroquois gene mirror, even in the absence of the upstream factor pannier. However, Wingless signaling does not lead to ventral mirror expression, implying the existence of ventral repressors.  相似文献   

18.
19.
20.
Glypicans are glycosylphosphatidylinositol-linked heparan sulfate proteoglycans that play an essential part in the regulation of morphogen signalling. Two new reports using Drosophila and mice have highlighted the importance of glypican endocytosis in the regulation of Hedgehog (Hh) signalling and in Wingless gradient formation. One Drosophila glypican, Dally-like, acts positively in Hh signalling, whereas mouse Glypican-3 is a negative regulator. This difference seems to be dependent on whether glypicans promote the internalization of Hh alone or as a complex with its receptor, Patched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号