首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the impact of nutrient enrichment on phosphorus (P) limited wetlands, we established experimental P additions in marshes throughout northern Belize. P significantly increased macrophyte primary production, which led to the rapid elimination of cyanobacterial mats. The replacement of cyanobacterial mats by macrophytes constrained autotrophic nitrogen (N) fixation, increased the quantity, and changed the quality of organic matter input to the sediments. We predicted that the activity of sediment heterotrophic N fixers will be impacted by these alterations in carbon input. We used the acetylene reduction technique to measure potential (glucose amended) nitrogenase activity (NA) in sediments from controls and treatment plots that have been P enriched for four years and dominated either by Eleocharis cellulosa, or Typha domingensis for two years. NA in P-enriched plots was 2–3 orders of magnitude higher than NA in controls. NA was positively correlated with the soil reactive P, both total organic and microbial carbon, live root biomass, and total phospholipid fatty acids (PLFA) as an indicator of active microbial biomass. It was negatively correlated with the concentration of ammonium-N. Path analysis revealed that the indirect effect of P on NA through the root biomass was more important than the direct effect of P. NA of the upper sediment layer was consistently higher in Eleocharis than in Typha dominated plots, despite the higher litter input by Typha. We feel that the higher levels of lignin and phenolics occurring in Typha litter, relative to Eleocharis, constrained NA in Typha plots. Handling editor: Luis Mauricio Bini  相似文献   

2.
The importance of fire to the maintenance of herbaceous plant communities in Florida wetland ecosystems is widely acknowledged. However, despite the acceptance of fire as a natural and necessary disturbance, ecosystem responses to fire in these systems are still poorly understood. Of particular concern is the effect of fire on the dynamics of plant communities dominated by Cladium jamaicense Crantz and Typha domingensis Pers. High nutrient levels, primarily phosphorus, and prolonged hydroperiods have been associated with Typha expansion into Cladium dominated communities. Recent studies suggest that fire is a disturbance that may play a facilitative role in this process. The objective of this study was to monitor the long-term effects of a single prescribed fire on Cladium and Typha densities in a freshwater marsh in Florida. Transects located at two burned sites and one unburned site were sampled prior to and annually for four years following a prescribed, lightning-season fire. There was a significant increase (P < 0.01) in Typha at both burn sites for two years after the fire. However, this increase was temporary since Typha density declined to pre-burn levels in the third and fourth years post-burn. Cladium density at the burned sites either increased or remained unchanged throughout the study period. When the control site unexpectedly burned in the fourth year of the study, density changes of Typha were similar to those observed at the original burn sites. Overall, we did not see any lasting changes in Cladium and Typha as a result of the fires, even though soil nutrient levels and hydroperiods were within levels documented to enhance Typha expansion.  相似文献   

3.
Two strategies for phosphorus (P) economy in P-limiting environment are conservation of use and enhanced acquisition. Using two wetland macrophytes as an example, we show how these strategies change when the P-limitation is removed. Phosphorus resorption and activities of root phosphatases were evaluated over 4 years in Eleocharis cellulosa Torr. and Typha domingensis Pers. from nutrient addition experiment (P, N, N&P, control) established in 15 P limited marshes of Belize. We hypothesized that after P addition both species will increase tissue P content and decrease P resorption efficiency and root phosphatase activity. Initially high phosphorus resorption efficiency, PRE, significantly decreased in Eleocharis 2 years after the first nutrient addition, while no significant decrease was recorded for Typha. Even more dramatic was 5- to 6-fold increase in P in senescent tissues of Eleocharis as compared to less than 2-fold increase in Typha. Root phosphatase activity was high for both species from control plots. After P addition, Eleocharis showed 35% to 70% decrease in enzyme activity correlated to availability of inorganic P in sediments. Eleocharis and Typha employ the “conservation of use” strategy when growing in P limited oligotrophic marshes. In addition, Eleocharis is also using the “enhanced acquisition” strategy. These strategies change when the P limitation is removed but the response varies between the two species and thus changes in the proportion of these two species in a community may result in differences in ecosystem processes such as decomposition.  相似文献   

4.
1. The expansion of Typha domingensis into areas once dominated by Cladium jamaicense in the Florida Everglades has been attributed to altered hydrology and phosphorus enrichment, although increased concentrations of sulphate and phosphorus often coincide. The potential importance of hydrogen sulphide produced from sulphate in the expansion of Typha has received little attention. The present study aimed to quantify the comparative growth and photosynthetic responses of Cladium and Typha to sulphate/sulphide. 2. Laboratory experiments showed that Cladium is less tolerant of sulphide than Typha. Cladium was adversely affected at sulphide concentrations of approximately 0.22 mm , while Typha continued to grow well and appeared healthy up to 0.69 mm sulphide. 3. Experiments in field mesocosms provided strong support for species‐specific differences in physiology and growth. Regardless of interstitial sulphide concentrations attained, Typha grew faster and had a higher photosynthetic capacity than Cladium. However, sulphide concentrations in the mesocosms reached only 0.18 mm which, based on the hydroponic study, was insufficient to affect the growth or photosynthetic responses of either species. Nevertheless, the upper range of sulphide (0.25–0.375 mm ) in Everglades’ soil is high enough, based on our results, to impact Cladium but not Typha. 4. This research supports the hypothesis that sulphide accumulation could affect plant species differentially and modify species composition. Consequently, the role of sulphate loading should be considered, in conjunction with hydroperiod, phosphorus availability and disturbances, in developing future management plans for the Everglades.  相似文献   

5.
Pauliukonis  Nijole  Gough  Laura 《Plant Ecology》2004,173(1):1-15
Although clonal growth is a dominant mode of plant growth in wetlands, the importance of clonal integration, resource sharing among ramets, to individual ramet generations (mother and daughter) and entire clones of coexisting species has not been well investigated. This study evaluated the significance of clonal integration in four sedge species of varying ramet aggregations, from clump-forming species (Clumpers –Carex sterilis, Eleocharis rostellata), with tightly aggregated ramets (rhizomes<1cm), to runner species (Runners –Schoenoplectus acutus, Cladium mariscoides), with loosely aggregated ramets. We manipulated clonal integration by either severing connections between target mother and daughter ramets or leaving connections intact, and then planted them in an intact neighborhood of a fen in Michigan, USA. We measured growth parameters of original and newly produced ramets over two growing seasons and conducted a final biomass harvest, to address four hypotheses. First, we expected integrated clones to accumulate more biomass than severed clones. However, final clone-level biomass and ramet production were the same for both treatments in all species although severing initially stimulated ramet production by Schoenoplectus and produced a more compact ramet aggregation in Cladium. Second, we hypothesized that mother ramets would experience a cost of integration, through reduced ramet or biomass production, while daughters would experience a benefit, through increased resource availability from mothers. Mother ramets of Cladium suffered a cost from integration, while Schoenoplectus mothers suffered a slight cost and Carex daughters saw a slight benefit. Finally, we hypothesized that integration would be more active in runner species than in clumper species. Indeed, we documented more active integration in runners than clumpers, but none of the study species were dependent upon integration for growth or survival once daughter ramets were established with their own roots and shoots. This study demonstrates that integration between established ramets may not be the most important advantage to clonal growth in this wetland field site. The loss of integration elicited varied responses among coexisting species in their natural habitat, somewhat but not completely related to their growth form, suggesting that a combination of plant life history traits contributes to the dependence upon clonal integration among established ramets of clonal species.  相似文献   

6.
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.Section editor: H. Lambers  相似文献   

7.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

8.
Phosphate solubilizing microorganisms are ubiquitous in soils and could play an important role in supplying P to plants where plant unavailable P content in soil was more. A phosphatase and phytase producing fungus Emericella rugulosa was isolated and tested under field condition (Pearl millet as a test crop) in a loamy sand soil. In the experimental soil 68% organic phosphorous was present as phytin; less than 1% of phosphorous was present in a plant available form. The maximum effect of inoculation on different enzyme activities (acid phosphatase, alkaline phosphatase, phytase, and dehydrogenase) was observed between 5 and 8 weeks of plant age. The depletion of organic P was much higher than mineral and phytin P. The microbial contribution was significantly higher than the plant contribution to the hydrolysis of the different P fractions. A significant improvement in plant biomass, root length, seed and straw yield and P concentration of root and shoot resulted from inoculation. The results suggest that Emericella rugulosa produces phosphatases and phytase, which mobilize P and enhance the production of pearl millet.  相似文献   

9.
李玉全  李永生  赵法箴 《生态学报》2015,35(21):7229-7235
为探讨盐度变化对脊尾白虾(Exopalaemon carinicauda)渗透、代谢及免疫相关酶活力的影响,实验设置了盐度渐变和骤变两个实验。渐变实验,设置5、10、15、20、25、30、33(CK)、40和45共9个盐度梯度;骤变实验,盐度从33突变至0、5、15、25和45,检测血清ATP酶(包括Na+/K+-ATP酶和总ATP酶)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)及超氧化物歧化酶(SOD)活力。结果表明,渐变情况下,盐度为5时,ATP酶活力出现最高值,然后随着盐度的升高表现出先降低后升高的趋势。总ATP酶活力在盐度为15—30之间较稳定,并在此范围内达到最低值。AKP和ACP活力几乎不受盐度渐变的影响。SOD活力随盐度的升高,先上升后下降,并在盐度为33时达到最大值。骤变情况下,ATP酶活力随时间波动较大,AKP和SOD随时间波动较小,而ACP几乎不受影响。结果说明,盐度骤变对脊尾白虾酶活力的影响较盐度渐变明显,ATPase和SOD活力更易随盐度而变化,代谢酶(AKP、ACP)受盐度变化的影响较小,说明渗透调节和免疫相关酶活力对盐度变化反应敏感,养殖过程中应尽量保持盐度稳定。  相似文献   

10.
李善家  苟伟  王辉  伍国强  苏培玺 《生态学报》2019,39(19):7189-7196
研究植物叶片碳(C)、氮(N)、磷(P)计量特征及其与环境因子相关性将为揭示植物对营养元素需求和环境互馈能力提供理论基础。以内蒙古额济纳旗黑河下游距主河道由近及远选择的8个黑果枸杞(Lycium ruthenicum Murr.)优势种群落为研究对象,分析其在不同水分、盐分土壤层环境下叶片C、N、P含量及比值特征,探讨黑果枸杞群落分布的主要限制元素和土壤水盐对其化学计量的影响。研究结果显示:黑果枸杞群落C含量为(331.56±11.99) mg/g,N含量为(13.17±2.92) mg/g,P含量为(2.48±1.64) mg/g,元素C与N、N与P之间呈正相关关系,C与P呈负相关关系,N与C∶N、P与C∶P及N∶P之间呈极显著负相关关系(P0.01);浅层土壤(0—40 cm)水分与P含量呈极显著负相关(P0.01),与C∶P呈显著正相关(P0.05),深层土壤(40—80 cm)水分、盐分均与N含量呈显著负相关(P0.05),与C∶N呈极显著正相关(P0.01)。结果表明:黑果枸杞C∶N主要由N限制,C∶P、N∶P主要由P限制,N∶P小于限制性养分理论阈值14,指示其生长主要受到N限制;黑果枸杞叶片N含量及C∶N比值对深层土壤水分和盐分具有协同响应特征,反映了荒漠植物在干旱盐渍环境中的抗逆境策略。  相似文献   

11.
12.
秦岭地区华北落叶松人工林地土壤养分和酶活性变化   总被引:8,自引:0,他引:8  
以秦岭地区不同林龄(5年生、10年生、20年生、30年生和40年生)华北落叶松人工林为研究对象,采用野外调查采样和室内分析相结合的方法,研究了不同林龄华北落叶松人工林地土壤剖面p H值、有机质养分和酶活性的变化。结果表明:土壤p H值随着林龄有降低趋势,随着土层深度的增加有升高趋势。土壤有机质和土壤速效氮、速效磷和速效钾在近熟龄期显著高于幼龄期。土壤中的磷酸酶、脲酶、蔗糖酶和过氧化氢酶活性随着林龄都呈"高—低—高"的趋势,幼龄期的土壤蔗糖酶活性显著高于近熟龄的,而磷酸酶、脲酶和过氧化氢酶活性是近熟龄期的显著高于中幼龄。土壤速效养分和酶活性都随着土层深度的增加有显著的降低。相关分析表明磷酸酶活性与有机质、速效氮、速效磷、速效钾和脲酶活性呈极显著的正相关性(P0.01),脲酶与有机质、速效氮和速效钾呈极显著正相关。蔗糖酶与过氧化氢酶活性显著负相关(P0.05),与p H值有一定的正相关性。秦岭地区华北落叶松人工林进入近熟林之后土壤肥力有一定的恢复,而在中幼龄阶段土壤养分比较缺乏,尤其是氮磷。  相似文献   

13.
Phosphatase activities were characterized in intact mycelial forms of Pseudallescheria boydii, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 41.41 ± 2.33 nmol p-NP per h per mg dry weight, linearly with increasing time and with increasing cell density. MgCl2, MnCl2 and ZnCl2 were able to increase the (p-NPP) hydrolysis while CdCl2 and CuCl2 inhibited it. The (p-NPP) hydrolysis was enhanced by increasing pH values (2.5-8.5) over an approximately 5-fold range. High sensitivity to specific inhibitors of alkaline and acid phosphatases suggests the presence of both acid and alkaline phosphatase activities on P. boydii mycelia surface. Cytochemical localization of the acid and alkaline phosphatase showed electron-dense cerium phosphate deposits on the cell wall, as visualized by electron microscopy. The product of p-NPP hydrolysis, inorganic phosphate (Pi), and different inhibitors for phosphatase activities inhibited p-NPP hydrolysis in a dose-dependent manner, but only the inhibition promoted by sodium orthovanadate and ammonium molybdate is irreversible. Intact mycelial forms of P. boydii are also able to hydrolyze phosphoaminoacids with different specificity.  相似文献   

14.
Oligotrophic, phosphorus (P) limited herbaceous wetlands of northern Belize are being impacted by P loading from fertilizer runoff. P enrichment causes a shift in autotroph communities from a microphyte (cyanobacterial mats, CBM) to macrophyte (Eleocharis spp., Typha domingensis) dominated system. To document potential effects of P, salinity, and macrophyte species on the heterotrophic microbial community nutritional status (represented especially by specific phospholipids fatty acids and specific respiration rate), biomass and activities, we took soil samples from established P enrichment plots in replicated marshes of two salinity levels. P addition increased microbial biomass carbon (C), nitrogen (N) and P, as well as soil nutrient transformation rates (nitrogenase activity, N mineralization and immobilization, methanogenesis). The effect of plant species (Eleocharis vs Typha sites) was generally lower than the effect of P addition (CBM vs Eleocharis sites) and was most evident at the low salinity sites, where Eleocharis dominated plots had enhanced nitrogenase activity and P microbial immobilization. Salinity reduced the overall rates of microbial processes; it also weakened the positive effect of both P addition and plant species on microbial activities. Lastly, the amount of N stored in microbial cells, likely in form of osmoprotective compounds, was enhanced by salinity.  相似文献   

15.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

16.
A study was made of the aquatic environment, tissue nutrient composition and surface phosphatase activities of the aquatic moss Warnstorfia fluitans in Brandon Pithouse Stream, a small acidic stream in N-E England. The water, which originates from an underground spring, had been pH 2.6 for at least 30 years, but about 3.9 during the present study. The moss was by far the most abundant phototroph during all this period. Seasonal changes in aqueous nitrogen and phosphorus fractions were measured over a 2-year period near the source. Most of the filtrable N and P were at times organic, but the very high N:P ratio (even if organic N is excluded) suggests that only organic phosphate is likely to be important for the moss. There was a high peak in organic phosphate in late spring in both study years. Surface phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities were highly correlated in the field and in axenic culture, though there were some differences in response to environmental factors. Axenic material showed higher PMEase and PDEase activities when grown with organic P than with inorganic P. Although the data suggest that internal P content is an important factor influencing phosphatase activities, PDEase activity was especially marked when the moss was grown with the diester, DNA, as P source, indicating that at least one of its surface phosphatases can also respond directly to the environment. Handling editor: S. M. Thomaz  相似文献   

17.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

18.
A common but often less tested explanation for the successful invasion of alien species is that invasive alien species outcompete their co-occurring natives, which may not always be the case. In this study, we established artificial environmental gradients in a series of pot experiments with controlled environments to investigate the effects of salinity, sediment type and waterlogging on the performance of and interactions between Phragmites australis (native) and Spartina alterniflora (alien), which generally co-exist in the saline intertidal zones of Chinese and American coasts. Significant effects of salinity and waterlogging were detected on biomass production and morphological characteristics of S. alterniflora and P. australis, and the competitive interactions between the two species were found to vary with all three environmental factors in our experiments. Relative Neighbor Effect (RNE) analyses indicate that competitive dominance of S. alterniflora occurred under the conditions of high salinity, sandy sediment and full immersion, whereas P. australis showed competitive dominance under the conditions of low salinity and non-immersion. Our results suggest that S. alterniflora might outcompete P. australis under conditions present in early salt marsh succession, which support the viewpoint that the outcomes of competition between co-occurring native and invasive alien plants depend on the growing conditions. The implication of this study is that in response to the environmental changes expected from seawater intrusion and sea-level rise, the range of S. alterniflora is expected to expand further in the Yangtze River estuary in the future.  相似文献   

19.
The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer’s recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.  相似文献   

20.
Ye  Y.  Tam  Nora F. Y. 《Hydrobiologia》2002,479(1-3):75-81
Growth and physiological responses of two mangrove species (Kandelia candel and Bruguiera gymnorrhiza) to livestock wastewater under two salinity conditions (seawater with salinity of 30þ and freshwater) were examined in greenhouse pot-cultivation systems for 144 days. Wastewater treatment significantly enhanced growth of Kandelia candel and Bruguiera gymnorrhiza in terms of stem height, stem basal diameter, leaf production, maximum unit leaf area and relative growth rate. Wastewater discharges and salinity levels did not significantly change biomass partitioning of Kandelia candel, however, more biomass of Bruguiera gymnorrhiza was allocated to leaf due to wastewater discharges. In Bruguiera gymnorrhiza, contents of chlorophyll a and chlorophyll b increased with wastewater discharges but such increase was not observed in Kandelia candel. On the other hand, livestock wastewater increased leaf electric conductance in Kandelia candel but not in Bruguiera gymnorrhiza. The peroxidase activity in stem and root of Kandelia candel under both salinity conditions increased due to wastewater discharges, while the activity in root of the treated Bruguiera gymnorrhiza seedlings decreased under freshwater condition but increased at seawater salinity. The superoxide dismutase activity in treated Bruguiera gymnorrhiza decreased but did not show any significant change in Kandelia candel receiving livestock wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号