首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic analysis of Thermococcus sp. NA revealed the presence of a 3,927-base-pair (bp) family B-type DNA polymerase gene, TNA1_pol. TNA1_pol, without its intein, was overexpressed in Escherichia coli, purified using metal affinity chromatography, and characterized. TNA1_pol activity was optimal at pH 7.5 and 75 degrees C. TNA1_pol was highly thermostable, with a half-life of 3.5 h at 100 degrees C and 12.5 h at 95 degrees C. Polymerase chain reaction parameters of TNA1_pol such as error-rate, processivity, and extension rate were measured in comparison with rTaq, Pfu, and KOD DNA polymerases. TNA1_pol averaged one incorrect bp every 4.45 kilobases (kb), and had a processivity of 150 nucleotides (nt) and an extension rate of 60 bases/s. Thus, TNA1_pol has a much faster elongation rate than Pfu DNA polymerase with 7-fold higher fidelity than that of rTaq.  相似文献   

2.
Mechanisms that allow replicative DNA polymerases to attain high processivity are often specific to a given polymerase and cannot be generalised to others. Amplification efficiency is lower in family B-type DNA polymerases than in family A-type (Taq) polymerases because of their strong 3′–5′ exonuclease-activity. Here, we have red the exonuclease domain of the Thermococcus onnurineus NA1 (TNA1) DNA polymerase, especially Asn210 to Asp215 residues in Exo II motif (NXXXFD), to improve the processivity. N213D mutant protein had higher processivity and extension rate than the wild-type TNA1 DNA polymerase, retaining a lower mutation frequency than recombinant Taq DNA polymerase. Consequently, the N213D mutant could amplify target DNA up to 13.5 kb in length from human genomic DNA and 16.2 kb in length from human mitochondrial DNA while wild-type TNA1 amplified target DNA of 2.7 kb in length from human genomic DNA.  相似文献   

3.
The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity.  相似文献   

4.
The effect of locked nucleic acid (LNA) modification position upon representative DNA polymerase and exonuclease activities has been examined for potential use in primer extension genotyping applications. For the 3′→5′ exonuclease activities of four proofreading DNA polymerases (Vent, Pfu, Klenow fragment and T7 DNA polymerase) as well as exonuclease III, an LNA at the terminal (L-1) position of a primer is found to provide partial protection against the exonucleases of the two family B polymerases only. In contrast, an LNA residue at the penultimate (L-2) position generates essentially complete nuclease resistance. The polymerase active sites of these enzymes also display a distinct preference. An L-1 LNA modification has modest effects upon poly merization, but an L-2 LNA group slows dTTP incorporation somewhat while virtually abolishing extension with ddTTP or acyTTP terminators, even with A488L Vent DNA polymerase engineered for terminator incorporation. These observations on active site preference have been utilized to demonstrate two novel assays: exonuclease-mediated single base extension (E-SBE) and proofreading allele-specific extension (PRASE). We show that a model PRASE genotyping reaction with L-2 LNA primers offers greater specificity than existing non-proofreading assays, whether or not the non-proofreading reaction employs LNA-modified primers.  相似文献   

5.
Archaeal family B polymerases bind tightly to the deaminated bases uracil and hypoxanthine in single-stranded DNA, stalling replication on encountering these pro-mutagenic deoxynucleosides four steps ahead of the primer–template junction. When uracil is specifically bound, the polymerase–DNA complex exists in the editing rather than the polymerization conformation, despite the duplex region of the primer-template being perfectly base-paired. In this article, the interplay between the 3′–5′ proofreading exonuclease activity and binding of uracil/hypoxanthine is addressed, using the family-B DNA polymerase from Pyrococcus furiosus. When uracil/hypoxanthine is bound four bases ahead of the primer–template junction (+4 position), both the polymerase and the exonuclease are inhibited, profoundly for the polymerase activity. However, if the polymerase approaches closer to the deaminated bases, locating it at +3, +2, +1 or even 0 (paired with the extreme 3′ base in the primer), the exonuclease activity is strongly stimulated. In these situations, the exonuclease activity is actually stronger than that seen with mismatched primer-templates, even though the deaminated base-containing primer-templates are correctly base-paired. The resulting exonucleolytic degradation of the primer serves to move the uracil/hypoxanthine away from the primer–template junction, restoring the stalling position to +4. Thus the 3′–5′ proofreading exonuclease contributes to the inability of the polymerase to replicate beyond deaminated bases.  相似文献   

6.
The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) < Deep Vent (2.7 x 10(-6)) < Vent (2.8 x 10(-6)) < Taq (8.0 x 10(-6)) < < exo- Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.  相似文献   

7.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

8.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

9.
A novel mechanism for controlling the proofreading and polymerase activities of archaeal DNA polymerases was studied. The 3'-5'exonuclease (proofreading) activity and PCR performance of the family B DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus kodakaraensis KOD1) were altered efficiently by mutation of a "unique loop" in the exonuclease domain. Interestingly, eight different H147 mutants showed considerable variations in respect to their 3'-5'exonuclease activity, from 9% to 276%, as against that of the wild-type (WT) enzyme. We determined the 2.75A crystal structure of the H147E mutant of KOD DNA polymerase that shows 30% of the 3'-5'exonuclease activity, excellent PCR performance and WT-like fidelity. The structural data indicate that the properties of the H147E mutant were altered by a conformational change of the Editing-cleft caused by an interaction between the unique loop and the Thumb domain. Our data suggest that electrostatic and hydrophobic interactions between the unique loop of the exonuclease domain and the tip of the Thumb domain are essential for determining the properties of these DNA polymerases.  相似文献   

10.
Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.  相似文献   

11.
Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80°C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3–4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP.  相似文献   

12.
In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.  相似文献   

13.
Structures of mismatch replication errors observed in a DNA polymerase   总被引:9,自引:0,他引:9  
Johnson SJ  Beese LS 《Cell》2004,116(6):803-816
Accurate DNA replication is essential for genomic stability. One mechanism by which high-fidelity DNA polymerases maintain replication accuracy involves stalling of the polymerase in response to covalent incorporation of mismatched base pairs, thereby favoring subsequent mismatch excision. Some polymerases retain a "short-term memory" of replication errors, responding to mismatches up to four base pairs in from the primer terminus. Here we a present a structural characterization of all 12 possible mismatches captured at the growing primer terminus in the active site of a polymerase. Our observations suggest four mechanisms that lead to mismatch-induced stalling of the polymerase. Furthermore, we have observed the effects of extending a mismatch up to six base pairs from the primer terminus and find that long-range distortions in the DNA transmit the presence of the mismatch back to the enzyme active site, suggesting the structural basis for the short-term memory of replication errors.  相似文献   

14.
The gene encoding the proliferating cell nuclear antigen (PCNA), a sliding clamp of DNA polymerases, was cloned from an euryarchaeote, Thermococcus kodakaraensis KOD1. The PCNA homologue, designated Tk-PCNA, contained 249 amino acid residues with a calculated molecular mass of 28,200 Da and was 84.3% identical to that from Pyrococcus furiosus. Tk-PCNA was overexpressed in Escherichia coli and purified. This protein stimulated the primer extension abilities of the DNA polymerase from T. kodakaraensis KOD1 'KOD DNA polymerase'. The stimulatory effect of Tk-PCNA was observed when a circular DNA template was used and was equally effective on both circular and linear DNA. The Tk-PCNA improved the sensitivity of PCR without adverse effects on fidelity with the KOD DNA polymerase. This is the first report in which a replication-related factor worked on PCR.  相似文献   

15.
During the genomics era, the use of thermostable DNA polymerases increased greatly. Many were identified and described—mainly of the genera Thermus, Thermococcus and Pyrococcus. Each polymerase has different features, resulting from origin and genetic modification. However, the rational choice of the adequate polymerase depends on the application itself. This review gives an overview of the most commonly used DNA polymerases used for PCR application: KOD, Pab (Isis?), Pfu, Pst (Deep Vent?), Pwo, Taq, Tbr, Tca, Tfi, Tfl, Tfu, Tgo, Tli (Vent?), Tma (UITma?), Tne, Tth and others.  相似文献   

16.
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties.  相似文献   

17.
DNA polymerase from Thermococcus kodakaraensis KOD1 (previously Pyrococcus sp. KOD1) is one of the most efficient thermostable PCR enzymes exhibiting higher accuracy and elongation velocity than any other commercially available DNA polymerase [M. Takagi et al. (1997) Appl. Environ. Microbiol. 63, 4504-4510]. However, when long distance PCR (>5 kbp) was performed with KOD DNA polymerase, amplification efficiency (product yield) becomes lower because of its strong 3'-5' exonuclease activity for proof-reading. In order to improve a target length limitation in PCR, mutant DNA polymerases with decreased 3'-5' exonuclease activity were designed by substituting amino acid residues in conserved exonuclease motifs, Exo I (Asp141-Xaa-Glu), Exo II (Asn210-Xaa-Xaa-Xaa-Phe-Asp), and Exo III (Tyr311-Xaa-Xaa-Xaa-Asp). Exonuclease activity and amplification fidelity (error rate) of the DNA polymerases were altered by mutagenesis. However, long and accurate PCR by a single-type of mutant DNA polymerase was very difficult. The wild-type DNA polymerase (WT) and its exonuclease deficient mutant (N210D) were mixed in different ratio and their characteristics in PCR were examined. When the mixed enzyme (WT and N210D) was made at the ratio of 1:40, long PCR (15 kbp) at lower mutation frequency could be efficiently achieved.  相似文献   

18.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

19.
DNA聚合酶广泛应用于PCR技术,在生命科学研究及相关领域发挥重要作用。但目前商业化DNA聚合酶仍不能完全满足科研需要,有必要寻求高性能DNA聚合酶。文中克隆表达了超嗜热古菌(Thermococcus eurythermalis)A501来源的B家族DNA聚合酶基因(NCBI数据库基因登录号为TEU_RS04875)、表征该重组蛋白的生化特性、评价了其PCR应用。将删除intein蛋白序列的DNA聚合酶(Teu-PolB)进行体外重组表达,经亲和层析和离子交换层析纯化获得Teu-PolB蛋白;利用5′端带荧光标记的寡核苷酸作为底物,用尿素变性聚丙烯酰胺凝胶电泳鉴定Teu-PolB的生化特性;以噬菌体λDNA基因组为模板,探究Teu-PolB的PCR应用。结果显示,Teu-PolB具有DNA聚合酶活性和3′→5′核酸外切酶活性,该酶在98℃下的半衰期约为2 h,热稳定性高。使用Teu-PolB进行PCR扩增,最适PCR缓冲液为50 mmol/L Tris-HCl pH 8.0,2.5 mmol/L MgCl2,60 mmol/L KCl,10 mmol/L (NH<...  相似文献   

20.
The gene encoding the proliferating cell nuclear antigen (PCNA), a sliding clamp of DNA polymerases, was cloned from an euryarchaeote, Thermococcus kodakaraensis KOD1. The PCNA homologue, designated Tk-PCNA, contained 249 amino acid residues with a calculated molecular mass of 28,200 Da and was 84.3% identical to that from Pyrococcus furiosus. Tk-PCNA was overexpressed in Escherichia coli and purified. This protein stimulated the primer extension abilities of the DNA polymerase from T. kodakaraensis KOD1 ‘KOD DNA polymerase’. The stimulatory effect of Tk-PCNA was observed when a circular DNA template was used and was equally effective on both circular and linear DNA. The Tk-PCNA improved the sensitivity of PCR without adverse effects on fidelity with the KOD DNA polymerase. This is the first report in which a replication-related factor worked on PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号