首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of H1 histone on the action of DNA-relaxing enzyme.   总被引:8,自引:1,他引:7       下载免费PDF全文
The action of DNA-relaxing enzyme on H1-DNA complexes was investigated. Complexes of superhelical and relaxed closed circular duplex DNA with H1 were treated with mammalian relaxing enzyme, deproteinized, and electrophoresed on agarose gels. At relatively low ratios of H1 to superhelical DNA, molecules of superhelical density intermediate between those of the starting material and relaxed DNA, the normal product, were generated. At relatively high H1 histone concentrations (H1:DNA greater than 0.4 w/w), the superhelical DNA was not relaxed. Further, no superhelical turns were introduced into relaxed closed duplex DNA at any concentration of H1 tested. Thus, the binding of H1 histone to DNA prevents the action of the relaxing enzyme. Moreover, H1 histone does not appear to unwind the DNA duplex upon binding. The implications of these observations and the previously demonstrated specificity of H1 histone for superhelical DNA are discussed in relation to the structure of chromatin.  相似文献   

2.
3.
By moving boundary sedimentation it is shown that the interaction of H1 histone with superhelical circular SV40 DNA results in the formation of giant heterogeneous aggregates. The size of these aggregates grows with increasing H1 concentration. s20,w values of some 10 000 S were measured. As compared with open relaxed circular DNA a preferential interaction of superhelical DNA with H1 histone is observed, irrespective of the sign of the superhelical turns which was reversed by the addition to DNA of ethidium bromide. The addition to the H1 complexed aggregates of ethidium bromide effects a progressive breakdown of the aggregates. Furthermore, the superhelicity of DNA is not changed by the addition of small amounts of H1 histone.  相似文献   

4.
5.
Solution structures of nucleosomes containing a human histone variant, H2A.Z.1, were measured by small-angle X-ray and neutron scatterings (SAXS and SANS). SAXS revealed that the outer shape, reflecting the DNA shape, of the H2A.Z.1 nucleosome is almost the same as that of the canonical H2A nucleosome. In contrast, SANS employing a contrast variation technique revealed that the histone octamer of the H2A.Z.1 nucleosome is smaller than that of the canonical nucleosome. The DNA within the H2A.Z.1 nucleosome was more susceptible to micrococcal nuclease than that within the canonical nucleosome. These results suggested that the DNA is loosely wrapped around the histone core in the H2A.Z.1 nucleosome.  相似文献   

6.
7.
When chromosomal proteins in chromatin or in mononucleosomes were extensively cross-linked with an imido ester, the H1-containing nonameric histone complex was revealed. In this complex, histone H1 is connected with the octamer of core histones. The cross-linking of H1 to the octamer is realized preferentially through H2a and H3 histones. Some HMG (high mobility group) proteins located presumably in the linker regions of a nucleosome fiber also take part in the formation of dimers, possibly with the histones of a nucleosomal core. The results suggest mutual interactions between some linker-associated proteins and intranucleosomal histones. Experiments involving extensive cross-linking of proteins in the purified mononucleosome subfractions demonstrated differences in the organization of core histones between complete nucleosomes and nucleosomes lacking H1.Abbreviations HMG proteins high mobility group proteins - DMA dimethyladipimidate dihydrochloride - DMP dimethyl-3,3-dithio-bis-propionimidate dihydrochloride  相似文献   

8.
Circular dichroic spectra revealed that the previously known regular, asymmetric condensation of DNA by H1 histone was modulated by HMG1, a nonhistone chromosomal protein. Under approximately physiological salt and pH conditions (150 mM NaCl, pH 7), ellipticities at 270 nm were observed as follows: DNA, 9 X 10(3) degree, cm2/dmol nucleotide; DNA X H1 histone complex (1:0.4, w/w), -37 X 10(3) degree, cm2/dmol nucleotide, and DNA X H1 X HMG1 complex (1:0.4:0.4 w/w/w), -52 X 10(3) degree, cm2/dmol. HMG1 by itself did not distort the spectrum of DNA, showing that the effect of HMG1 on the DNA X H1 complex was not simply the summation of individual effects of HMG1 and H1 on the DNA spectrum. The effect of added HMG1 on the spectrum of the preformed DNA X H1 complex depended on the amount of HMG1 added and developed slowly (a day) as if a structure required annealing. The ternary complex, DNA X HMG1 X 1, seemed to represent a specific structure, since its formation depeNded on the reduced sulfhydryl state of HMG1; the disulfide form of HMG1, which was shown by circular dichroism to contain more random coil than did the reduced form, had no effect on the circular dichroic spectrum of the DNA X H1 complex.  相似文献   

9.
10.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

11.
12.
Wang C  Cai W  Li Y  Girton J  Johansen J  Johansen KM 《Fly》2012,6(2):93-97
The JIL-1 kinase is a multidomain protein that localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays have suggested that the function of the epigenetic histone H3S10ph mark is to antagonize heterochromatization by participating in a dynamic balance between factors promoting repression and activation of gene expression as measured by position-effect variegation (PEV) assays. Interestingly, JIL-1 loss-of-function alleles can act either as an enhancer or indirectly as a suppressor of w(m4) PEV depending on the precise levels of JIL-1 kinase activity. In this study, we have explored the relationship between PEV and the relative levels of the H3S10ph and H3K9me2 marks at the white gene in both wild-type and w(m4) backgrounds by ChIP analysis. Our results indicate that H3K9me2 levels at the white gene directly correlate with its level of expression and that H3K9me2 levels in turn are regulated by H3S10 phosphorylation.  相似文献   

13.
In C. elegans, mRNA production is initially repressed in the embryonic germline by a protein unique to C. elegans germ cells, PIE-1. PIE-1 is degraded upon the birth of the germ cell precursors, Z2 and Z3. We have identified a chromatin-based mechanism that succeeds PIE-1 repression in these cells. A subset of nucleosomal histone modifications, methylated lysine 4 on histone H3 (H3meK4) and acetylated lysine 8 on histone H4 (H4acetylK8), are globally lost and the DNA appears more condensed. This coincides with PIE-1 degradation and requires that germline identity is not disrupted. Drosophila pole cell chromatin also lacks H3meK4, indicating that a unique chromatin architecture is a conserved feature of embryonic germ cells. Regulation of the germline-specific chromatin architecture requires functional nanos activity in both organisms. These results indicate that genome-wide repression via a nanos-regulated, germ cell-specific chromatin organization is a conserved feature of germline maintenance during embryogenesis.  相似文献   

14.
Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.  相似文献   

15.
16.
汪晓雯  国立耘 《生物工程学报》2016,32(11):1564-1575
在真核生物中,DNA缠绕在组蛋白上形成核小体,一个组蛋白分子包括H2A、H2B、H3和H4各2个核心组蛋白亚基。在这4种核心组蛋白中,H2A富含多样化,且在细胞的生物途径中起重要作用的变异体,因此,H2A家族一直是研究热点。致病疫霉是重要的病原菌也是研究卵菌的模式物种之一,目前关于卵菌表观遗传的研究还未见报道。本研究针对致病疫霉组蛋白H2A变异体,利用基因组信息和基因芯片数据,通过序列比对、系统发育分析以及基因表达水平检测,发现在致病疫霉基因组中存在组蛋白H2A变异体H2A.X.1、H2A.X.2和H2A.Z,它们在不同生长发育阶段和侵染过程呈现特异的表达谱。研究结果为进一步研究致病疫霉表观遗传机制奠定了基础。  相似文献   

17.
The accumulation of divergent histone H4 amino acid sequences within and between ciliate lineages challenges traditional views of the evolution of this essential eukaryotic protein. We analyzed histone H4 sequences from 13 species of ciliates and compared these data with sequences from well-sampled eukaryotic clades. Ciliate histone H4s differ from one another at as many as 46% of their amino acids, in contrast with the highly conserved character of this protein in most other eukaryotes. Equally striking, we find paralogs of histone H4 within ciliate genomes that differ by up to 25% of their amino acids, whereas paralogs in other eukaryotes share identical or nearly identical amino acid sequences. Moreover, the most divergent H4 proteins within ciliates are found in the lineages with highly processed macronuclear genomes. Our analyses demonstrate that the dual nature of ciliate genomes-the presence of a "germline" micronucleus and a "somatic" macronucleus within each cell-allowed the dramatic variation in ciliate histone genes by altering functional constraints or enabling adaptive evolution of the histone H4 protein, or both.  相似文献   

18.
19.
We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号