首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The pale spitting spider Scytodes pallida (Aranae: Scytodidae) has a unique habit of spitting a glue‐like and possibly toxic substance at its prey to render them immobile prior to envenomation. Quantitative behavioural studies involving the spit, a first for S. pallida, demonstrate that the spider regulates its spit expenditure when offered prey of variable sizes and struggling intensities. This behaviour interestingly mirrors the regulation of venom expenditure according to prey sizes and difficulties exhibited in other non‐spitting spiders. The spit, however, did not appear to have any toxic effects on different prey types exposed to the spit, opposing the long‐standing belief that the spit from scytodids can poison prey.  相似文献   

2.
We studied the efficiency of the hunt and the characteristics of cooperation during the prey capture in a social spider Anelosimus eximius. Two natural types of prey of roughly the same length (20 mm) were used: grasshoppers (Orthoptera) and moths (Lepidoptera); 128 tests were made on 14 colonies, the smallest with 20 and the largest with 1,700 individuals. Test times were 12.00 h, defined as an inactive period for the spiders and 18.00 h, defined as an active period. Overall capture rate of intercepted prey was 66%: it was higher in large colonies or at 18.00 h, when more spider alerts were triggered by the struggling prey. Characteristics of cooperation during capture did not vary with colony size. Capture rate was higher for grasshoppers than moths (73%-58%) in spite of similar number of alerts (76%-87%); so moths must have been more difficult to capture. For both prey types, large colonies capture more rapidly and so had advantages in terms of time gain. We showed that cooperation depended on prey type: more spiders mobilised to attack moths and attack was faster than on grasshoppers. This may be interpreted as an adaptive response of the group to the prey type.  相似文献   

3.
Social behaviour involving cooperative prey capture and communal feeding is reported for the first time in the spider family Oxyopidae (lynx spiders), in a web-building species of the genus Tapinillus. This social spider inhabits communal webs that may contain several dozen individuals, including adults of both sexes and juveniles of different cohorts. Its colonies occur in clusters and appear to be long-lived, much like those of non-territorial permanently social species such as Anelosimus eximius (Theridiidae) or Agelena consociata (Agelenidae). However, unlike colonies of these other cooperative spiders, the colonies of the social Tapinillus do not have highly female-biased sex ratios. The possible explanations for this difference are discussed.  相似文献   

4.
The communal orb-weaving spider, Philoponella republicana,was observed in the subtropical moist forest of Southeast Peru. These spiders live in colonies of conspecifics whose individual orbs are connected by silk. The wrapping of a prey prior to feeding is a large component of the prey capture process because P. republicanahas no venom with which to kill an insect. Wrapping time was the only aspect of prey capture that was strongly correlated with the size of the insect captured. Occasionally we observed several individuals working together to wrap a prey item. These joint efforts were more frequent on prey larger than the capturing spider. Although group captures accounted for only 5.5% of captures, they represented 14.7% of the biomass obtained. A comparison of the relationship between wrapping time and prey size for solitary and group efforts suggested that, by working together, the spiders reduced their total handling time. In most cases only one spider fed on the captured prey.  相似文献   

5.
During the social period, molting behavior of the young spider, Amaurobius ferox, is highly synchronized within the clutch. Result of the experimental study suggests that social facilitation among group members increased the synchronization. The duration of the molting period of grouped spiderlings was significantly shorter than that of individually isolated spiderlings. Involving the particular maternal strategy in food supply, this phenomenon might have adaptive values in the maintenance of mutual tolerance among the siblings by decreasing the interindividual difference in development and in the avoidance of cannibalism on molting individuals. This probably will also serve to make the peaceful collective behaviors of the spiderlings in matriphagy and cooperative prey capture during their social period.  相似文献   

6.

Background

In group-living animals, social interactions and their effects on other life activities such as foraging are commonly determined by discrimination among group members. Accordingly, many group-living species evolved sophisticated social recognition abilities such as the ability to recognize familiar individuals, i.e. individuals encountered before. Social familiarity may affect within-group interactions and between-group movements. In environments with patchily distributed prey, group-living predators must repeatedly decide whether to stay with the group in a given prey patch or to leave and search for new prey patches and groups.

Methodology/Principal Findings

Based on the assumption that in group-living animals social familiarity allows to optimize the performance in other tasks, as for example predicted by limited attention theory, we assessed the influence of social familiarity on prey patch exploitation, patch-leaving, and inter-patch distribution of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. P. persimilis is highly specialized on herbivorous spider mite prey such as the two-spotted spider mite Tetranychus urticae, which is patchily distributed on its host plants. We conducted two experiments with (1) groups of juvenile P. persimilis under limited food on interconnected detached leaflets, and (2) groups of adult P. persimilis females under limited food on whole plants. Familiar individuals of both juvenile and adult predator groups were more exploratory and dispersed earlier from a given spider mite patch, occupied more leaves and depleted prey more quickly than individuals of unfamiliar groups. Moreover, familiar juvenile predators had higher survival chances than unfamiliar juveniles.

Conclusions/Significance

We argue that patch-exploitation and -leaving, and inter-patch dispersion were more favorably coordinated in groups of familiar than unfamiliar predators, alleviating intraspecific competition and improving prey utilization and suppression.  相似文献   

7.
Summary Selection might favor group foraging and social feeding when prey are distributed in patches that do not last long enough for a solitary individual to consume more than a small fraction of them (Pulliam and Millikan 1982; Pulliam and Caraco 1984). Here we considered the foraging behavior of a social spider, Anelosimus eximius, in light of this ephemeral resource hypothesis. This species builds large webs in which members cooperate to capture a wide variety of different sizes and types of prey, many of which are very large. The capture success of this species was very high across all prey sizes, presumably due to the fact that they foraged in groups. Group consumption times in natural colonies for all prey larger than five mm were less than the time that dead insects remained on the plastic sheets that we used as artificial webs. Solitary consumption estimates, calculated from the rate at which laboratory individuals extracted insect biomass while feeding, were the same as the residence times of insects on artificial webs in the field for insects between 6 and 15 mm in length and were significantly longer than the persistence of insects on plastic sheets for all larger insects. Large prey, that contribute substantially to colony energy supplies, appeared to be ephemeral resources for these spiders that could not be consumed by a single spider in the time they were available. These factors made the food intake of one spider in a group less sensitive to scavenging by others and could act to reinforce the social system of this species.  相似文献   

8.
Signal-generation behavior of Portia labiata, a web-invading araneophagic jumping spider (Salticidae), was investigated in the laboratory. Individuals derived from two habitats in the Philippines were compared: Los Baños, a low-elevation tropical rainforest site where prey (spider) diversity is especially high, and Sagada, a high-elevation pine-forest site where prey (spider) diversity is less. Maternal effects and variation in experience were minimized because all individuals tested were from laboratory rearing to second and third generation under standardized conditions. Individuals from both populations used a trial-and-error (generate-and-test) algorithm to derive appropriate aggressive-mimicry signals. However, in laboratory experiments, the Los Baños P. labiata relied on trial and error significantly more often than did the Sagada P. labiata. Selection pressures that may have been responsible for evolution of different levels of flexibility are considered, including the different arrays of prey to which the Los Baños and the Sagada P. labiata are exposed.  相似文献   

9.
The analysis of collaborative predation sequences performed by groups of 10 individuals (females) in a nonterritorial permanent-social spider, A. eximius, shows that prey-captures are organized in successive steps. Spiders begin by throwing sticky silk, which hinders the prey in the web; they then throw dry silk, which completes the immobilization of the prey. The third step is characterized by bites that paralyze the prey that will be then carried. A concordance test reveals a coordination of the individual's acts that explains the collaborative prey-capture efficiency. No individual specialization in one type of act has been shown. On the contrary, by using living preys or artificially dead vibrated preys, we show that all individuals have equipotential behaviors. Furthermore, each spider is able to adjust its behavior to the state of the prey. Individuals already involved in prey transportation can again display bites or sticky silk throwing if the prey is artificially vibrated. This mechanism, which corresponds to stimergic processes responsible for self-organized phenomena, already described in social insects, permits a coordination of individual acts without the recourse of direct communication. These results permit us to understand better how individuals coordinate their acts and lead us to support the hypothesis that the transition between solitary species and social species in spiders could have been sudden.  相似文献   

10.
A specialist predator that has a specialized diet, prey‐specific prey‐capture behaviour and a preference for a particular type of prey may or may not be specialized metabolically. Previous studies have shown that jumping spiders of the genus Portia prey on other spiders using prey‐specific prey‐capture behaviour, prefer spiders as prey to insects and gain long‐term benefits in terms of higher survival and growth rates on spider diets than on insect diets. However, it is unclear whether there are substances uniquely present in spiders on which Portia depends, or, alternatively, spiders and insects all contain more or less the same nutrients but the relative amounts of these substances are such that Portia perform better on a spider diet. These questions are addressed by testing the hypothesis that prey specialization includes metabolic adaptations that allow Portia an enhanced nutrient extraction or nutrient utilization efficiency when feeding on spider prey compared with insect prey. Three groups of Portia quei Zabka are fed either their preferred spider prey or one of two types of flies (Drosophila melanogaster Meigen) that differ in nitrogen and lipid content. Portia quei shows a higher feeding rate of high‐protein flies than of high‐lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization of the prey. The short‐term utilization of spider prey is similar to that of high‐lipid flies and both differ in several respects from the utilization of high‐protein flies. Thus, the short‐term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not. The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider‐specific substances.  相似文献   

11.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   

12.
Identifying the traits that foster group survival in contrasting environments is important for understanding local adaptation in social systems. Here, we evaluate the relationship between the aggressiveness of social spider colonies and their persistence along an elevation gradient using the Amazonian spider, Anelosimus eximius. We found that colonies of A. eximius exhibit repeatable differences in their collective aggressiveness (latency to attack prey stimuli) and that colony aggressiveness is linked with persistence in a site‐specific manner. Less aggressive colonies are better able to persist at high‐elevation sites, which lack colony‐sustaining large‐bodied prey, whereas colony aggression was not related to chance of persistence at low‐elevation sites. This suggests that low aggressiveness promotes colony survival in high‐elevation, prey‐poor habitats, perhaps via increased tolerance to resource limitation. These data reveal that the collective phenotypes that relate to colony persistence vary by site, and thus, the path of social evolution in these environments is likely to be affected.  相似文献   

13.
Predator–prey relationships are generally based on arm-race. Wasps and spiders are both predators, which could be potential prey for each other. The orb weaver spider Zygiella x-notata is sometimes a prey for the wasp Vespula germanica. We observed the wasp hunting behaviour under natural conditions, and we tested the influence of the spider’s behaviour on the wasp attack success. Wasps were active predators during the reproductive period of the spider. Results showed that wasps located more easily male spiders than females particularly when they were engaged in mate guarding. Female location depended on the presence of a web, but also of prey or prey remains in the web. On the other hand, their location depend neither on the characteristics and the position of the retreat in the environment nor on the size of the web. After location, males were more often captured than females whatever their behaviour (mate guarding or not). Presence of prey remains or prey in the web did not increase the risk for the spider to be captured. There was also no influence of the retreat’s characteristics or of its position in the habitat on the risk for the spider to be captured; but wasp successful attacks were less numerous when silk was present around the entrance of the retreat or when the spider was completely inside. As prey and prey remains favoured location of spiders by the wasps, we tested spider web cleaning behaviour as a response to wasp predatory pressure. By throwing small polystyrene pellets in the webs, we observed that more 80% of the spiders rejected the pellets in less than one minute. Our data indicated that wasps were significant predators of Z. x-notata and wasp attack could have been a selective pressure that had favoured spider defensive behaviours such as web cleaning.  相似文献   

14.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

15.
Although in recent years behavioral syndromes have received a wealth of attention, how traits within syndromes respond to changing environments is not well resolved. Here, we test the effects of temperature on a suite of behavioral traits in the spider Anelosimus studiosus to determine (1) whether there are shifts in individuals’ social tendency, activity level, and foraging behavior in response to temperature, (2) if these traits shift are in the direction predicted by within‐population axes of trait covariance, and (3) whether the effects of temperature differ among individuals. In previous work, we documented a behavioral syndrome in A. studiosus where increased tolerance of conspecifics is correlated with decreased activity level and aggressiveness toward prey. Furthermore, there are distinct among‐population differences in behavior, where individuals from warm sites tend to be more aggressive and active than individuals from cold sites. Our data here reveal that at warmer temperatures A. studiosus exhibit diminished tolerance of conspecifics, increased activity levels, shorter latencies of attack, and increased tendencies to attack multiple prey items. Furthermore, we found that individual differences in behavior were consistent across temperature regimes for the majority of behavioral traits considered here: social tendency, activity level, and latency of attack. These findings are consistent with the hypothesis that these behaviors are linked together by shared genetic underpinnings (e.g., metabolic differences) and shift non‐independently in response to contemporary abiotic environment (i.e., temperature). Furthermore, our data suggest that temperature itself could be responsible for the among‐population variation in social structure in A. studiosus.  相似文献   

16.
George W. Uetz 《Oecologia》1989,81(2):154-159
Summary Increased prey capture efficiency in colonial spiders is a consequence of the ricochet effect, as prey are captured after they bounce off several webs in succession. In this study, the prey capture of three species of colonial spiders in the genus Metepeira from Mexico are compared. These species, from different habitats, show varying levels of social organization (group size and withingroup spacing) that affect prey capture from ricochets. Metepeira sp. a (a presumed new species tentatively named atascadero) from desert grassland habitats, occur solitarily or in small groups, and gain little from prey ricochets: prey capture rates are low and variance in prey captured/spider is high. M. spinipes, from mesic agricultural sites, occur in groups of 10–150, and show a ricochet effect resulting in more and larger prey, and reduced variance in capture rate. M. incrassata, from tropical rainforest/agricultural sites, occur in large colonies of hundreds to thousands of individuals, and show a similar ricochet effect. The ricochet effect does not influence taxonomic composition of prey in either M. atascadero or M. spinipes, but does in tropical M. incrassata. This result, however, is primarily due to the capacity of certain taxa (eg., Lepidoptera), more common in the tropics, to escape more easily from spider webs. A comparison of prey capture efficiency of colonial M. incrassata with that of solitary M. atascadero shows that the ricochet effect provides an increase in efficiency across all size classes of prey.  相似文献   

17.
In two adjacent Japanese pear orchards (orchards 1 and 2), we studied the seasonal occurrence of the Kanzawa spider mite, Tetranychus kanzawai, and its predators. Also the response of these predators to the volatiles from kidney bean plants infested with T. kanzawai was investigated using trap boxes in orchard 1. The mite density in orchard 1 was unimodal, with one peak at the end of August. In this orchard, population development of the specialist insect predators, Scolothrips takahashii, Oligota kashmirica benefica and Stethorus japonicus, was almost synchronized with that of the spider mites. These predators disappeared when the density of their prey became very low in mid-September. Both S. takahashii and O. kashmirica benefica abruptly increased in number in orchard 2 when the spider mite population in orchard 1 decreased. These results suggested that some of the predators migrated from orchard 1 to orchard 2. In this period, predator-traps with T. kanzawai-infested bean plants attracted significantly more S. takahashii than traps with uninfested plants. Very few individuals of S. japonicus and O. kashimirica benefica were found in the traps, despite their abundance in orchard 1. The generalist insect predator, Orius sp., was attracted to the traps throughout the experimental period irrespective of the density of spider mites, although this predator was never observed inside the orchards.  相似文献   

18.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

19.
The predatory mite, Phytoseiulus persimilis is an important biological control agent of herbivorous spider mites. This species is also intensively used in the study of tritrophic effects of plant volatiles in interactions involving plants, herbivores, and their natural enemies. Recently, a novel pathogenic bacterium, Acaricomes phytoseiuli, has been isolated from adult P. persimilis females. This pathogen causes a characteristic disease syndrome with dramatic changes in longevity, fecundity, and behavior. Healthy P. persimilis use spider mite-induced volatiles to locate prey patches. Infection with A. phytoseiuli strongly reduces the attraction to herbivore-induced plant volatiles. The loss of response to herbivore-induced plant volatiles along with the other disease symptoms can have a serious impact on the success of biological control of spider mites. In this study, we have developed a molecular tool (PCR) to detect the pathogenic bacterium in individual predatory mites. PCR primers specific for A. phytoseiuli were developed based on 16S ribosomal DNA of the bacterium. The PCR test was validated with DNA extracted from predatory mites that had been exposed to A. phytoseiuli. A survey on different P. persimilis populations as well as other predatory mite species from several companies that rear predatory mites for biological control revealed that the disease is widespread in Europe and is restricted to P. persimilis. The possibility that the predatory mites get infected via their prey Tetranychus urticae could be eliminated since the PCR test run on prey gave a negative result.  相似文献   

20.
Summary Previous research by many investigators has demonstrated food limitation in both web-building and wandering spiders. Field experiments have tested for exploitative competition for prey in web-building, but not wandering species. As a first step to examining the question of whether spiders without webs exhibit exploitative competition, we manipulated densities of young stages of a common wolf spider, Schizocos ocreata, and measured (1) spider growth rate and (2) numbers of Collembola, a potential prey organism. Replicate populations of recently hatched S. ocreata were established in 1-m2 fenced plots at four levels: 0×, 0.25×, 1× and 4× natural density. Increasing spider density had a negative effect on spider growth rate, defined as increase in weight or cephalothorax width. Early in the experiment spider density had a weak negative effect on Collembola numbers [p(F)=0.08]. Taken together, this probable response by Collembola and the clear effect of spider density on growth rate constitute the first experimental evidence of intraspecific exploitative competition for prey in a species of wandering spider. We discuss (1) the strength of this evidence given the constraints of the experiment's design, and (2) the implications of the strong convergence in spider densities that had occurred after 2.5 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号