首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   

2.
Cysteine endopeptidases, SH-EP from Vigna mungo and EP-C1 from Phaseolus vulgaris, act to degrade seed storage protein during seed germination. Using transgenic tobacco plants, expression of SH-EP and promoter activity of the EP-C1 gene were analyzed in transgenic tobacco plants. The promoters of the two genes in tobacco seeds showed germination-specific activation, although post-translational processing of SH-EP and regulatory regions of promoter of the gene for EP-C1 were found to differ between leguminous seeds and transgenic tobacco seeds.  相似文献   

3.
The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high seed-specific expression in transgenic plants. Arcelin-5 is an abundant seed protein found in some wild common bean (Phaseolus vulgaris L.) genotypes. Seeds of Arabidopsis and Tepary bean (Phaseolus acutifolius A. Gray) plants transformed with arcelin-5 gene constructs synthesized arcelin-5 to levels of 15% and 25% of the total protein content, respectively. To our knowledge, such high expression levels directed by a transgene have not been reported before. The transgenic plants also showed low plant-to-plant variation in arcelin expression. Complex transgene integration patterns, which often result in gene silencing effects, were not associated with reduced arcelin-5 expression. High transgene expression was the result of high mRNA steady-state levels and was restricted to seeds. This indicates that all requirements for high seed-specific expression are cis elements present in the cloned genomic arcelin-5 sequence and trans-acting factors that are available in Arabidopsis and Phaseolus spp., and thus probably in most dicotyledonous plants.  相似文献   

4.
5.
We produced human growth hormone (hGH), a protein that stimulates growth and cell reproduction, in genetically engineered soybean [Glycine max (L.) Merrill] seeds. Utilising the alpha prime (α') subunit of β-conglycinin tissue-specific promoter from soybean and the α-Coixin signal peptide from Coix lacryma-jobi, we obtained transgenic soybean lines that expressed the mature form of hGH in their seeds. Expression levels of bioactive hGH up to 2.9% of the total soluble seed protein content (corresponding to approximately 9?g?kg(-1)) were measured in mature dry soybean seeds. The results of ultrastructural immunocytochemistry assays indicated that the recombinant hGH in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Specific bioassays demonstrated that the hGH expressed in the soybean seeds was fully active. The recombinant hGH protein sequence was confirmed by mass spectrometry characterisation. These results demonstrate that the utilisation of tissue-specific regulatory sequences is an attractive and viable option for achieving high-yield production of recombinant proteins in stable transgenic soybean seeds.  相似文献   

6.
7.
Novel protein expression in plant-based systems has become an important tool in producing and studying therapeutic proteins. Among many plant-based systems developed so far, oleosin fusion technology is one of the most cost-effective and convenient methods. In this study, an important therapeutic protein, human insulin-like growth factor 1 (hIGF-1), was expressed in Arabidopsis thaliana seeds via this technology. The plant bias codon usage-optimized hIGF-1 gene was fused to the C-terminal of A. thaliana 18.5 kDa oleosin gene, and the fusion gene driven by an oleosin promoter was transferred into A. thaliana ecotype Col-0. The accumulation of oleosin-hIGF-1 fusion protein in transgenic seeds was up to 0.75% of total seed protein (TSP) and the expression level of hIGF-1 was 0.17% of the TSP, which was eight times higher than previously reported using other plant-based hIGF-1 production systems. The biological activity of the hIGF-1 as an oleosin-hIGF-1 fusion protein in vitro was demonstrated by using human SH-SY5Y neuroblastoma cells.  相似文献   

8.
A single-chain Fv antibody (scFv) gene, which has previously been used to immunomodulate abscisic acid (ABA) activity in transgenic tobacco to create a 'wilty' phenotype, was put under control of the seed-specific USP promoter from Vicia faba and used to transform tobacco. Transformants were phenotypically similar to wild-type plants apart from their seeds. Anti-ABA scFv embryo development differed markedly from wild-type embryo development. Seeds which accumulated similar levels of a scFv that binds to oxazolone, a hapten absent from plants, developed like wild-type embryos. Anti-ABA scFv embryos developed green cotyledons containing chloroplasts and accumulated photosynthetic pigments but produced less seed storage protein and oil bodies. Anti-ABA scFv seeds germinated precociously if removed from seed capsules during development but were incapable of germination after drying. Total ABA levels were higher than in wild-type seeds but calculated free ABA levels were near-zero until 21 days after pollination. We show for the first time seed-specific immunomodulation and the resulting switch from the seed maturation programme to a germination programme. We conclude that the immunomodulation of hormones can alter the development programme of target organs, allowing the study of the directly blocked endogenous molecules and manipulation of the system concerned.  相似文献   

9.
Conrad  Udo  Fiedler  Ulrike 《Plant molecular biology》1998,38(1-2):101-109
Expression and stability of immunoglobulins in transgenic plants have been investigated and optimized by accumulation in different cellular compartments as cytosol, apoplastic space and endoplasmic reticulum (ER) as will be discussed in this review. In several cases described the highest accumulation of complete active antibodies was achieved by targeting into the apoplastic space. High-level expression of active recombinant single-chain Fv antibodies (scFv's) was obtained by retention of these proteins in the lumen of the endoplasmic reticulum. This has been shown for leaves and seeds of transgenic tobacco as well as for potato tubers. Transgenic tobacco seeds, potato tubers and tobacco leaves can facilitate stable storage of scFv's accumulated in the ER over an extended (seeds, tubers) or a short (leaves) period of time. The expression of specific scFv's in different plant species, plant organs and cellular compartments offers the possibility of blocking regulatory factors or pathogens specifically. Examples are scFv's expressed in the cytosol and the apoplastic space of transgenic plant cells modulating the infection process of plant viruses and a cytosolically expressed scFv that influenced the activity of phytochrome A protein. The immunomodulation approach has been shown to be also applicable for investigating the action of the phyto-hormone abscisic acid (ABA). High-level accumulation of specific anti-ABA scFv's in the ER of all leaf cells has been used to block the influence of ABA on the stomatal functions. Seed-specific expression of high amounts of anti-ABA-scFv's at a defined time of seed-development induced a developmental switch from seed ripening to vegetative growth. It has been demonstrated that ER retention is essential for the accumulation of sufficient scFv to bind high concentrations of ABA in the transgenic seeds.  相似文献   

10.
Rice seeds are potentially useful hosts for the production of pharmaceutical proteins. However, low yields of recombinant proteins have been observed in many cases because recombinant proteins compete with endogenous storage proteins. Therefore, we attempt to suppress endogenous seed storage proteins by RNA interference (RNAi) to develop rice seeds as a more efficient protein expression system. In this study, human growth hormone (hGH) was expressed in transgenic rice seeds using an endosperm-specific promoter from a 10 kDa rice prolamin gene. In addition, an RNAi cassette for reduction of endogenous storage protein expressions was inserted into the hGH expression construct. Using this system, the expression levels of 13 kDa prolamin and glutelin were effectively suppressed and hGH polypeptides accumulated to 470 μg/g dry weight at the maximum level in transgenic rice seeds. These results suggest that the suppression of endogenous protein gene expression by RNAi could be of great utility for increasing transgene products.  相似文献   

11.
Oleosin-fusion technology is used to express desired proteins. It was developed based on the properties of oleosin; the heterologous protein gene is fused to the oleosin gene and the fusion gene is driven by a seed-specific promoter. We replaced the seed specific promoter with the CaMV35S promoter to dive a gfp-oleosin fusion gene in transformed Arabidopsis. The heterologous oleosin-fusion protein was mainly accumulated in the transgenic Arabidopsis seeds and correctly targeted to oil bodies. This provides an alternate choice of promoter in oleosin-fusion technology.  相似文献   

12.
Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.  相似文献   

13.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   

14.
15.
Seed storage proteins are a major component of mature seeds. They are utilized as protein sources in foods. We designed seed storage proteins containing bioactive peptides based on their three-dimensional structures. Furthermore, to create crops with enhanced food qualities, we developed transgenic crops producing seed storage proteins with bioactive peptides. This strategy promises to prevent lifestyle-related diseases by simple daily food consumption. In this review, we discuss a strategy to develop transgenic crops to improve human health by advanced utilization of seed storage proteins.  相似文献   

16.
Seed storage proteins are a major component of mature seeds. They are utilized as protein sources in foods. We designed seed storage proteins containing bioactive peptides based on their three-dimensional structures. Furthermore, to create crops with enhanced food qualities, we developed transgenic crops producing seed storage proteins with bioactive peptides. This strategy promises to prevent lifestyle-related diseases by simple daily food consumption. In this review, we discuss a strategy to develop transgenic crops to improve human health by advanced utilization of seed storage proteins.  相似文献   

17.
18.
The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.  相似文献   

19.
As opposed to first-generation biotechnology products, such as pest-resistant crops and herbicide-resistant crops, second-generation products often utilize plant-derived, homologous or heterologous genes and/or promoters. In this study, we evaluated the ability of a promoter from a gene encoding a major storage protein in cottonseed to drive an antisense sequence of the cotton FAD2 gene to down-regulate the activity of Delta-12 desaturase enzyme in cottonseeds. The oleic acid level in the transgenic cottonseeds approximately doubled from the wild-type level of 15%, with a concomitant decrease in the level of linoleic acid. A more extensive study of one line revealed a higher degree of seed-to-seed variability in the transgenic phenotype. A thorough investigation was conducted to determine the impact of the use of a homologous promoter to drive a transgene on the activity of the endogenous promoter. The results showed that the use of the homologous alpha-globulin B promoter for transgenic purposes did not adversely affect the expression of alpha-globulin B storage protein in cottonseed. The results obtained in this investigation on the use of a homologous promoter and antisense technology will be useful in the design of strategies to alter biosynthetic pathways for nutritional quality improvements and for the production of heterologous proteins of commercial value in seeds.  相似文献   

20.
Drying of seeds, when imposed prematurely, elicits a switch in metabolism; events unique to development, such as synthesis of storage protein, are terminated, whereas syntheses associated with germination and growth are initiated. To determine the role of desiccation in down-regulating the expression of genes for storage proteins, the desiccation responsiveness of the 5[prime] and 3[prime] regulatory regions of the genes encoding the pea storage protein vicilin and the Brassica napus storage protein napin was tested in transgenic tobacco seed. Chimeric genes were introduced into tobacco; these genes consisted of the coding region of the reporter gene for [beta]-glucuronidase (GUS) and 5[prime] and/or 3[prime] regions from the vicilin or napin genes or, as controls, the same regions derived from constitutively expressed genes, presumed to be desiccation insensitive. In transgenic seed expressing the gene constructs containing the vicilin or napin promoters, GUS activities declined during late seed development, and more dramatically, after imbibition of mature dry seed or prematurely dried seed. In contrast, GUS activities increased after seed rehydration when the constitutive viral promoter replaced the storage-protein gene 5[prime] region. Transient expression assays support the hypothesis that premature drying down-regulates the expression of the storage-protein gene promoter. Following desiccation, this region may become insensitive to positive controlling factors; alternatively, changes to trans-acting factors may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号