首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease that affects exocrine glands. To study the molecular mechanism and identify crucial genes/pathways in pSS pathogenesis, the microarray-based whole-genome gene expression profiles from salivary glands of patients with pSS and non-sicca controls were retrieved. After normalization and subsequent batch effect adjustment, significance analysis of microarrays method was applied to five available datasets, and 379 differentially expressed genes (DEGs) were identified. The 300 upregulated DEGs were enriched in Gene Ontology terms of immune and inflammatory responses, including antigen processing and presentation, interferon-mediated signaling pathway, and chemotaxis. Previously reported pSS-associated genes, including HLA-DRA, TAP2, PRDM1, and IFI16, were found to be significantly upregulated. The downregulated DEGs were enriched in pathways of salivary secretion, carbohydrate digestion and absorption, and starch and sucrose metabolism, implying dysfunction of salivary glands during pathogenesis. Next, a protein-protein interaction network was constructed, and B2M, an upregulated DEG, was shown to be a hub, suggesting its potential involvement in pSS development. In summary, we found the activation of pSS-associated genes in pathogenesis, and provide clues for salivary glands dysfunction. Experimental investigation on the identified DEGs in this study will deepen our understanding on pSS.  相似文献   

5.
6.
7.
8.
The vertebrate hypothalamic–pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic–neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes, ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function.  相似文献   

9.
Wang JR  Wei YM  Yan ZH  Zheng YL 《Genetica》2008,134(3):277-285
Seventy-three gene sequences encoding monomeric α-amylase inhibitors were characterized from cultivated wheat “Chinese Spring”, group 6 nullisomic-tetrasomic lines of “Chinese Spring” and diploid putative progenitors of common wheat. The monomeric α-amylase inhibitors from the different sources shared very high homology (99.54%). The different α-amylase inhibitors, which were determined by the 24 single nucleotide polymorphisms (SNPs) of their gene sequences, were investigated. A total of 15 haplotypes were defined by sequence alignment, among which 9 haplotypes were found with only one single sequence sample. Haplotype H02 was found to be the main haplotype occurring in 83 WMAI sequence samples, followed by haplotype H11. The median-joining network for the 15 haplotypes of monomeric α-amylase inhibitor gene sequences from hexaploid wheats was star like, and at least two subclusters emerged. Furthermore evidence of homologous recombination was found between the haplotypes. The relationship between nucleotide substitutions and the amino acid changes in WMAI of hexaploid wheats was summarized. It was clear that only five polymorphic sites in the nucleotide sequence of WMAI resulted in amino acid variations, and that should be the reason for different structure and function of inhibitors. However, little evidence could be found that there were WMAI genes in the A genome of hexaploid wheat, whereas it could conclude from our results that the A genome diploid wheat had WMAI genes. The overall information on the monomeric α-amylase inhibitors from wheat and Aegilops strongly support the view that these inhibitors have evolved from a common ancestral gene through duplication and mutation. Ji-Rui Wang and Yu-Ming Wei are contributed equally to this paper.  相似文献   

10.
11.
Reproduction is a complex physiological process that is regulated by multiple genes and pathways. Compared with studies of common livestock, fewer studies of genes related to the fertility of rabbits (Oryctolagus cuniculus) have been reported, and the molecular mechanism of their high productivity is still poorly understood. To identify candidate genes associated with development and prolificacy in rabbits, we analyzed gene expression differences among the ovaries of mature Californian rabbit (LC), and mature (HH) and immature Harbin white rabbit (IH) using digital gene expression technology. We detected 885 and 321 genes that were significantly differentially expressed in comparisons between HH/IH and HH/LC, respectively. The functions of the differentially expressed genes (DEGs) were determined by GO classification and KEGG pathway analysis. The results suggest that most of the DEGs between the mature and immature developmental stages were predominantly associated with DNA replication, cell cycle, and progesterone-mediated oocyte maturation, and most were up-regulated in the IH group compared with the HH group. The DEGs involved in disparate fecundities between HH and LC were associated with reproduction, fructose and mannose metabolism, steroid hormone biosynthesis, and pyruvate metabolism. Our results will contribute to a better understanding of changes in the regulatory network in ovary at different developmental stages and in different fertility of rabbit.  相似文献   

12.
The effect of gibberellic acid (GA3) on gene expression in wheat aleurone cells has been characterised. In-vitro translation of polyadenylated RNA indicated that α-amylase and other messenger-RNA (mRNA) species increase in relative concentration in GA3-treated tissue. At least one mRNA species declines in relative level in response to GA3. There is also a GA3-dependent, four-fold increase in the level of polyadenylated RNA. This effect is largely the result of increased levels of many mRNA species which are also present in untreated tissue. Seven GA3-induced polyadenylated RNA species including the Amyl α-amylase gene product have been cloned as complementary DNA in the plasmid pBR322. These cloned DNAs have been used as hybridisation probes to show that the GA3-induced increase in α-amylase mRNA is more prolonged than the accumulation of the other GA3-regulated mRNA species. A polyadenylated-RNA sequence showing reduced concentration in GA3-treated tissue has also been cloned.  相似文献   

13.
Summary Polymorphism of an endogenous -amylase inhibitor in wheat was studied using iso-electric focusing followed by monoclonal antibody — based immunoblotting. Ten isoforms of the inhibitor detected in common wheat and its wild counterparts were assigned to five homoeologous loci. Three -amylase inhibitor loci (Isa-1) were identified in common wheat and located on the long arms of chromosomes 2A, 2B and 2D. In a sample of 27 bread wheats, eight durum wheats, and 12 diploid wheat relatives, amphiploids and triticales, a high resolution isoelectric-focusing separation demonstrated two active and one null allele at the Isa-A1, two alleles at the Isa-B1, one allele at the Isa-D1, four alleles at the Isa-S1, and one allele at the Isa-G1 locus. The most frequent electrophoretic pattern of common wheat cultivars consisted of two isoforms, encoded respectively by the Isa-B1b, Isa-D1 a alleles and the Isa-Alnull allele. All the durum wheats had only one inhibitor form controlled by allele Isa-B1b, which was accompanied by the null allele at the Isa-A1 locus.Contribution No. 210 of the Food Science Department, University of Manitoba  相似文献   

14.
Aleurone tissue from freshly harvested immature wheat grains (Triticum aestivum L. cv. Sappo) which is normally unresponsive to gibberellic acid can be made responsive by subjecting the tissue to a pre-incubation treatment in a simple buffered medium prior to the addition of the growth substance. The effectiveness of this treatment is dependent on grain age, with grains less than 15–20 days post anthesis failing to become converted to a responsive state whilst tissue from grains older than this become increasingly susceptible. Tissue from grains of a certain age (approx. 25–28 days post anthesis) produce small amounts of -amylase following this treatment even in the absence of exogenously applied growth substance. Using different 32-labelled complementary-DNA probes for -amylase in wheat it was demonstrated that the failure of freshly harvested tissue to produce -amylase was correlated with the absence of the appropriate mRNA species. Inability to accumulate -amylase mRNA in response to gibberellic acid was removed by the pre-iccubation treatment and also by enforced drying. The gibberellin-regulated expression of other unidentified genes also responds to pre-incubation or drying. Induction of gibberellin-responsiveness in immature aleurone cells did not extend to the secretion of acid phosphatase, protease and ribonuclease.Abbreviations cDNA complementary DNA - dpa days post anthesis - GA gibberellin - GA3 gibberellic acid  相似文献   

15.
16.
17.
18.
In the past few years many - and -tubulin genes of different organisms have been cloned and studied, and in most systems studied they constitute multigene families. In plants, most studies have been done in Arabidopsis thaliana and Zea mays. In this paper, the study of mRNA accumulation by in situ hybridization and the activity of three maize -tubulin gene promoters (tua1, tua2 and tua3) in transgenic tobacco plants are described. In maize, the expression of these three tubulin isotypes differ in the root and shoot apex and is associated with different groups of cells throughout the distinct stages of cell differentiation. In transgenic tobacco plants the promoters of the genes, fused to the uidA reporter gene (GUS), direct expression to the same tissues observed by in situ hybridization experiments. The tua1 promoter is mainly active in cortex-producing meristematic cells and in pollen, whereas tua3 is active in cells which are differentiating to form vascular bundles in the root and shoot apices. The accumulation of tua2 mRNA is detected by RNA blot in a similar form as tua1, but at a very much low level. In situ hybridization indicates that the tua2 mRNA specifically accumulates in the maize root epidermis. No GUS staining was detected in transgenic tobacco plants with the tua2 promoter. The difference in expression of the specific genes may be linked to processes where microtubules have different functions, suggesting that in plants, as in animals, there are differences in the function of the tubulin isotypes.  相似文献   

19.
Müllerian ducts of male chickens undergo regression around day 12 of incubation, but the underlining mechanisms remain unclear. The purpose of this study was to identify factors that contribute to regression of the Müllerian duct in the chicken. We first employed annealing control primer-based RT-PCR to screen candidate genes differentially expressed in the Müllerian ducts between male and female. Four differentially expressed genes (MSX2, GAL10, VCP and PLCH1) were partially sequenced. The expression of mRNA of the latter genes and MSX1 in the male and female Müllerian ducts were compared at 7.5, 8 and 9 days of incubation using semi-quantitative RT-PCR. The results indicated that both MSX1 and MSX2 mRNA was highly expressed in the male Müllerian duct at day 9 of incubation, whereas, PLCH1 mRNA was lower in the male duct at day 9 of incubation compared to that of the female duct. Although VCP mRNA was expressed in both left and right female Müllerian ducts, no expression was detected in the male duct. Whole mount in situ hybridyzation analysis showed that the expression of MSX1 and MSX2 mRNA were localized specifically in the mesenchymal cells of the male Müllerian duct at day 9 of incubation. In contrast, VCP mRNA expression was observed in both mesenchymal and epithelial cells of the female Müllerian duct but not detected in the male duct. These results suggest that both up-regulation of MSX1 and MSX2 mRNA expression is involved in the regression of the Müllerian duct in male chicken embryo, whereas VCP expression is involved in development of the female duct.  相似文献   

20.
Classification and characterization of the rice α-amylase multigene family   总被引:18,自引:0,他引:18  
To establish the size and organization of the rice -amylase multigene family, we have isolated 30 -amylase clones from three independent genomic libraries. Partial characterization of these clones indicates that they fall into 5 hybridization groups containing a total of 10 genes. Two clones belonging to the Group 3 hybridization class have more than one gene per cloned fragment. The nucleotide sequence of one clone from Group 1, OSg2, was determined and compared to other known cereal -amylase sequences revealing that OSg2 is the genomic analog of the rice cDNA clone, pOS103. The rice -amylase genes in Group 1 are analogous to the -Amy1 genes in barley and wheat. OSg2 contains sequence motifs common to most actively transcribed genes in plants. Two consensus sequences, TAACA G A A and TATCCAT, were found in the 5 flanking regions of -amylase genes of rice, barley and wheat. The former sequence may be specific to -amylase gene while the latter sequence may be related to a CATC box found in many plant genes. Another sequence called the pyrimidine box ( T C CTTTT T C ) was found in the -amylase genes as well as other genes regulated by gibberellic acid (GA). Comparisons based on amino acid sequence alignment revealed that the multigene families in rice, barley and wheat shared a common ancestor which contained three introns. Some of the descendants of the progenitor -amylase gene appear to have lost the middle intron while others maintain all three introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号