首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major auxin-binding protein from maize coleoptiles was purified to homogeneity. The protein has an apparent mol. wt of 22 kd and binds 1-naphthylacetic acid with a KD of 2.40 x 10(-7) M. Additional antigenically related proteins, present in very low amounts, could be demonstrated in maize coleoptiles using immunodetection. Extensive protein sequence analysis of the major auxin-binding protein allowed the construction of several synthetic oligonucleotide probes which were used to isolate a cDNA coding for this protein. The cDNA corresponds to a mRNA with a 3'-poly(A)+ sequence and a single, long open reading frame of 603 bases. The open reading frame, starting 34 residues from the 5' end of the cDNA, predicts a 21,990 Dalton protein of 201 amino acids. Comparison of this deduced amino acid sequence with the partial amino acid sequences of purified auxin-binding protein, revealed a perfect match, involving a total of 53 amino acid residues. The primary amino acid sequence includes a 38-amino-acid-long N-terminal hydrophobic leader sequence which could represent a signal for translocation of this protein to the endoplasmic reticulum. An additional signal is located at the C-terminal end, consisting of the amino acids KDEL known to be responsible for preventing secretion of proteins from the lumen of the endoplasmic reticulum in eucaryotic cells. The primary sequence contains a N-glycosylation site (-asp133-thr-thr-). This site was found to be glycosylated by a high-mannose-type oligosaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previously we had demonstrated by photoaffinity labeling that a 57-kDa protein of the endoplasmic reticulum can bind and become covalently linked to glycosylatable photoreactive peptides containing the sequence-Asn-Xaa-Ser/Thr-. Subsequently, it was found that this protein, called glycosylation site-binding protein, was a multifunctional protein, i.e. it was identical to protein disulfide isomerase (PDI), the beta-subunit of prolyl hydroxylase and thyroid hormone-binding protein. In this study, the peptide specificity for binding to this 57-kDa protein, hereafter called PDI, has been investigated in more detail using photoaffinity probes. The results reveal that although N-glycosylation by oligosaccharyl transferase in the endoplasmic reticulum has an absolute requirement for an hydroxyamino acid in the third amino acid residue of the glycosylation site sequence, no such specificity is observed in the binding of such peptides to PDI. In addition to the lack of specificity for an hydroxyamino acid in the third residue position, no specificity was observed for the asparagine residue in the first position. Thus, binding is not restricted to peptides containing N-glycosylation sites. We have investigated the discrepancy between this apparent lack of sequence specificity and earlier results indicating that binding of peptides to PDI was specific for N-glycosylation site sequences. We now demonstrate that PDI in the lumen of microsomes is more efficiently labeled by peptides containing photoreactive-Asn-Xaa-Ser/Thr- sequences than by nonacceptor site sequences because the former become glycosylated. This increased labeling does not occur because the glycosylated form of the probes are preferentially recognized by PDI. Rather, it appears that increased polarity of the affinity probe after attachment of the oligosaccharide chain prevents its exit from the sealed microsomes, in effect concentrating it within the lumen of the microsome. These results, coupled with other studies on the multifunctional nature of PDI, suggest that the observed peptide binding may be a manifestation of the ability of PDI to recognize the backbone of polypeptides in the lumen of the endoplasmic reticulum.  相似文献   

3.
The glucose-regulated protein grp94 is related to heat shock protein hsp90   总被引:12,自引:0,他引:12  
We report the sequence of a cDNA clone that encodes the C-terminal half of the hamster 94 X 10(3) Mr glucose-regulated protein, grp94. The amino acid sequence of this protein is about 50% homologous to Drosophila hsp83 and yeast hsp90, suggesting that grp94 and hsp90 have similar functional properties. Unlike hsp90, grp94 is associated with the endoplasmic reticulum. It has the same C-terminal tetrapeptide as two other luminal endoplasmic reticulum proteins, grp78 and protein disulphide isomerase. We suggest that this sequence forms part of a signal for retention of proteins in the lumen of the endoplasmic reticulum.  相似文献   

4.
We have cloned the gene for the resident luminal ER protein BiP from the fission yeast, Schizosaccharomyces pombe. The predicted protein product is equally divergent from the budding yeast and mammalian homologues. Disruption of the BiP gene in S. pombe is lethal and BiP mRNA levels are regulated by a variety of stresses including heat shock. Immunofluorescence of cells expressing an epitope-tagged BiP protein show it to be localized to the nuclear envelope, around the cell periphery and in a reticular structure through the cytoplasm. Unexpectedly, we find the BiP protein contains an N-linked glycosylation site which can be utilized. The C-terminal four amino acids of BiP are Ala-Asp-Glu-Leu, a new variant of the XDEL sequence found at the C-termini of luminal endoplasmic reticulum proteins. To determine whether this sequence acts as a sorting signal in S.pombe we expressed an acid phosphatase fusion protein extended at its C-terminus with the amino acids ADEL. Analysis of the sorting of this fusion protein indicates that the ADEL sequence is sufficient to cause the retention of proteins in the endoplasmic reticulum. The sequences DDEL, HDEL and KDEL can also direct ER-retention of acid phosphatase in S.pombe.  相似文献   

5.
6.
We have cloned, sequenced, and expressed full length cDNA clones encoding two abundant, luminal endoplasmic reticulum proteins (ERp), ERp59/PDI and ERp72. ERp59/PDI has been identified as the microsomal enzyme protein disulfide isomerase (PDI). An analysis of the amino acid sequence of ERp72 showed that it shared sequence identity with ERp59/PDI at three discrete regions, having three copies of the sequences that are thought to be the CGHC-containing active sites of ERp59/PDI. Thus, ERp72 appears to be a newly described member of the family of CGHC-containing proteins. ERp59/PDI has the sequence KDEL at its COOH terminus while ERp72 has the related sequence KEEL. Removal of the KDEL of ERp59/PDI or the KEEL of ERp72 by in vitro mutagenesis techniques and subsequent analysis of the mutants in transient expression assays, showed that both sequences are endoplasmic reticulum retention signals for their respective proteins. The most dramatic difference in secretion between the wild type and the mutant forms of the protein was seen in the case of ERp72.  相似文献   

7.
The small subunit (SSU) of ribulose 1-5 bisphosphate carboxylase/oxygenase is a 15 kd protein in Euglena gracilis. The protein is synthesized as a 130 kd precursor as shown by immunoprecipitation of in vitro translation products and confirmed by immunoprecipitation of in vivo pulse-labeled Euglena proteins. From the published SSU amino acid sequence, an oligonucleotide was synthesized that specifically hybridizes to a large mRNA whose length (approximately 4.3 kb) is consistent with the precursor size. The complete nucleotide sequence of the SSU mRNA was obtained by sequencing a cDNA clone from a lambda gt11 library and completed by direct mRNA sequencing. We report for the first time the complete sequence of a large mRNA and show that it encodes eight consecutive SSU mature molecules. The deduced precursor amino acid sequence shows that the amino terminus of the first SSU molecule is preceded by a 134 amino acid peptide which is cleaved during the maturation process. This long transit peptide exhibits features characteristic of signal peptides involved in the secretion of proteins through the endoplasmic reticulum. This is in agreement with the idea that the third (outer) membrane of the Euglena chloroplast envelope is of endoplasmic reticulum origin.  相似文献   

8.
A cDNA clone encoding 55-kDa multifunctional, thyroid hormone binding protein of rabbit skeletal muscle sarcoplasmic reticulum was isolated and sequenced. The cDNA encoded a protein of 509 amino acids, and a comparison of the deduced amino acid sequence with the NH2-terminal amino acid sequence of the purified protein indicates that an 18-residue NH2-terminal signal sequence was removed during synthesis. The deduced amino acid sequence of the rabbit muscle clone suggested that this protein is related to human liver thyroid hormone binding protein, rat liver protein disulfide isomerase, human hepatoma beta-subunit of prolyl 4-hydroxylase and hen oviduct glycosylation site binding protein. The protein contains two repeated sequences Trp-Cys-Gly-His-Cys-Lys proposed to be in the active sites of protein disulfide isomerase. Northern blot analysis showed that the mRNA encoding rabbit skeletal muscle form of the protein is present in liver, kidney, brain, fast- and slow-twitch skeletal muscle, and in the myocardium. In all tissues the cDNA reacts with mRNA of 2.7 kilobases in length. The 55-kDa multifunctional thyroid hormone binding protein was identified in isolated sarcoplasmic reticulum vesicles using a monoclonal antibody specific to the 55-kDa thyroid hormone binding protein from rat liver endoplasmic reticulum. The mature protein of Mr 56,681 contains 95 acidic and 61 basic amino acids. The COOH-terminal amino acid sequence of the protein is highly enriched in acidic residues with 17 of the last 29 amino acids being negatively charged. Analysis of hydropathy of the mature protein suggests that there are no potential transmembrane segments. The COOH-terminal sequence of the protein, Arg-Asp-Glu-Leu (RDEL), is similar to but different from that proposed to be an endoplasmic reticulum retention signal; Lys-Asp-Glu-Leu (KDEL) (Munro, S., and Pelham, H.R.B. (1987) Cell 48, 899-907). This variant of the retention signal may function in a similar manner to the KDEL sequence, to localize the protein to the sarcoplasmic or endoplasmic reticulum. The positively charged amino acids Lys and Arg may thus interchange in this retention signal.  相似文献   

9.
We have isolated a cDNA clone from Arabidopsis, At-ERabp1, for the Arabidopsis auxin binding protein located in the lumen of the endoplasmic reticulum (ER). This cDNA clone codes for a protein related to the major auxin binding protein from maize, Zm-ERabp1. A single open reading frame, 594 bases in length, predicts a protein of 198 amino acid residues and a molecular mass of 22,044 D. The primary amino acid sequence contains an N-terminal hydrophobic signal sequence of 33 amino acids. We demonstrated by in vitro studies that the At-ERabp1 protein is translocated into ER-derived microsomes. The protein was processed, and the cleavage site for the N-terminal signal peptide was determined by radiosequencing. The mature protein is composed of 165 amino acid residues, with a molecular mass of 18,641 D. The At-ERabp1 protein contains potential N-glycosylation sites (Asn46-Ile-Ser and Asn130-Ser-Thr). In vitro transport studies demonstrated cotranslational glycosylation. Retention within the lumen of the ER correlates with an additional signal located at the C terminus and represented by the amino acids Lys196-Asp-Glu-Leu, well known to be essential for active retrieval of proteins into the lumen of the ER. DNA gel blot analysis of genomic DNA revealed single hybridizing bands, suggesting that only a single At-ERabp1 gene is present in the Arabidopsis genome. Restriction fragment length polymorphism mapping indeed revealed a single locus mapping to chromosome 4.  相似文献   

10.
Several lines of evidence provided by other workers indicate that within the same species thyroid hormone binding protein, the beta-subunit of prolyl hydroxylase, and protein disulfide isomerase are the same protein. We sought to determine if glycosylation site binding protein, a lumenal protein of the endoplasmic reticulum, also has the same primary structure. To accomplish this the level of glycosylation site binding protein (GSBP) activity, measured by photolabeling with a glycosylation site peptide probe, was carried out in preparations of 3T3 cells and in E. coli transformed with human thyroid hormone binding protein cDNA. The results strongly support the idea that GSBP is identical to these other lumenal proteins of the endoplasmic reticulum.  相似文献   

11.
N-Glycosylation is normally a co-translational process that occurs as soon as a nascent and unfolded polypeptide chain has emerged ~12 residues into the lumen of the endoplasmic reticulum (ER). Here, we describe the efficient utilization of an N-glycosylation site engineered within the luminal extreme C-terminal residues of distinct integral membrane glycoproteins, a native ER resident protein and an engineered secreted protein. This N-glycan addition required that the acceptor asparagine within an Asn-Trp-Ser sequon be located at least four residues away from the C-terminus of the polypeptide and, in the case of membrane proteins, at least 13 residues away from the lumenal side of the transmembrane segment. Pulse-chase assays revealed that the natural N-glycans of the proteins studied were attached co-translationally, whereas C-terminal N-glycosylation occurred post-translocationally within a time frame of hours in Xenopus laevis oocytes and minutes in human embryonic kidney 293 (HEK293) cells. In oocyte and HEK cell expression systems, affinity tag-driven C-terminal N-glycosylation may facilitate the determination of orientation of the C-terminal tail of membrane proteins relative to the membrane.  相似文献   

12.
Ribophorins I and II represent proteins that are postulated to be involved in ribosome binding. They are abundant, highly-conserved glycoproteins located exclusively in the membranes of the rough endoplasmic reticulum. As the first step in the further characterization of the structure and function of these proteins, we have isolated and sequenced full-length human cDNA clones encoding ribophorins I and II using probes derived from a human liver expression library cloned into pEX1. The authenticity of the clones was verified by overlaps in the protein sequence of N-terminal and several internal fragments of canine pancreatic ribophorins I and II. The cDNA clones hybridize to mRNA species of 2.5 kb in length, and encode polypeptides of 68.5 and 69.3 kd, respectively. Primary sequence analysis, coupled with biochemical studies on the topology, indicates that both ribophorins are largely luminally disposed, spanning the membrane once and having 150 and 70 amino acid long cytoplasmically disposed C termini, respectively. Both are synthesized as precursors having cleavable signal sequences of 23 (ribophorin I) and 22 (ribophorin II) amino acids. The topology suggested by the primary structure has been confirmed biochemically using proteolytic enzymes and anti-ribophorin antibodies. Proteolysis of intact microsomes with a variety of enzymes resulted in a reduction in the apparent mol. wt of ribophorin I that would correspond to a loss of its 150-amino acid cytoplasmic tail. In the case of ribophorin II, it is completely resistant to such proteolysis which is consistent with its luminal disposition and fairly hydrophobic C terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M J Smith  G L Koch 《The EMBO journal》1989,8(12):3581-3586
The complete amino acid sequence of CRP55, the major 55 kd calcium binding protein of the ER lumen, was deduced from the murine cDNA nucleotide sequence. This was completed using a novel application of PCR amplification. The mature 399 residue protein encoded is preceded by a 17 amino acid leader sequence and ends in the ER signal sequence, KDEL. The protein contains no calcium binding motifs of the EF hand type or of the form seen in calelectrin-related proteins. The major region of potential low affinity calcium binding sites is a polyacidic stretch towards the C terminus. The primary structure of the protein is markedly zonal. The N-terminal region, of approximately neutral net charge and hydrophobicity, is followed by a central proline-rich zone with repeat sequences separated from the polyacidic C-terminal stretch by a short hydrophobic sequence. The general shape suggested is a globular domain attached to an extended tail. Immunofluorescence studies show that the protein is present in skeletal muscle and indicate that it is a sarcoplasmic reticulum protein. We propose that the protein be named calreticulin to reflect its calcium binding activity and location in the ER and SR.  相似文献   

14.
A 2.4-kilobase cDNA clone for human steroid-sulfatase (STS) was isolated and sequenced, which encoded an enzymatically active protein. The deduced amino acid sequence comprises 583 amino acids with an N-terminal signal peptide of 21 or 23 residues and four potential N-glycosylation sites. Two of the N-glycosylation sites are utilized and were localized to the asparagine residues 47 and 259. STS has the solubility properties of an integral membrane protein. The resistance of STS toward proteinase K after translocation into microsomes suggests that most, if not all, sequences of STS are exposed at the luminal side of microsomes. The deduced amino acid sequence predicts two membrane-spanning domains (amino acids 185-211 and 213-237) separated by a helix-breaking proline residue. We propose for STS a three-domain model. Two glycosylated luminally oriented domains of 161 and 346 residues are separated by a hydrophobic domain spanning the membrane twice in opposite directions. STS expressed in BHK-21 cells is located predominantly in the endoplasmic reticulum; smaller fractions are found in the Golgi, at the cell surface, multivesicular endosomes, as well as in lysosomes. The stability of STS in lysosomes may be related to the high homology of the two luminal domains of STS with the lysosomal sulfatases, arylsulfatase A, and arylsulfatase B. In spite of its similarity with these two lysosomal sulfatases, STS does not contain mannose 6-phosphate residues and is transported to lysosomes by a mannose 6-phosphate receptor-independent mechanism.  相似文献   

15.
A type III intermediate filament gene is expressed in mature neurons   总被引:6,自引:0,他引:6  
  相似文献   

16.
17.
Protein folding and quality control in the endoplasmic reticulum are critical processes for which our current understanding is far from complete. Here we describe the functional characterization of a new human 27.7-kDa protein (ERp27). We show that ERp27 is a two-domain protein located in the endoplasmic reticulum that is homologous to the non-catalytic b and b' domains of protein disulfide isomerase. ERp27 was shown to bind Delta-somatostatin, the standard test peptide for protein disulfide isomerase-substrate binding, and this ability was localized to the second domain of ERp27. An alignment of human ERp27 and human protein disulfide isomerase allowed for the putative identification of the peptide binding site of ERp27 indicating conservation of the location of the primary substrate binding site within the protein disulfide isomerase family. NMR studies revealed a significant conformational change in the b'-like domain of ERp27 upon substrate binding, which was not just localized to the substrate binding site. In addition, we report that ERp27 is bound by ERp57 both in vitro and in vivo by a similar mechanism by which ERp57 binds calreticulin.  相似文献   

18.
The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity.  相似文献   

19.
Benitez EM  Stolz A  Wolf DH 《FEBS letters》2011,585(19):3015-3019
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY?. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY?0000. It decelerates its degradation rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号