首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human RAD18 gene product interacts with HHR6A and HHR6B   总被引:1,自引:0,他引:1       下载免费PDF全文
During DNA replication, lesion bypass is an important cellular response to unrepaired damage in the genome. In the yeast Saccharomyces cerevisiae, Rad6 and Rad18 are required for both the error-free and error-prone lesion bypass mechanisms. Furthermore, Rad6–Rad18 interaction is thought to be critical at an early step during lesion bypass in yeast. Two closely related human homologs of yeast Rad6 have been identified as HHR6A and HHR6B. Here, we report a full-length cDNA coding for the human homolog of yeast Rad18. The human RAD18 gene codes for a protein of 484 amino acid residues with a calculated molecular weight of 54 804 Da, and the gene is localized to chromosome 3 between reference intervals D3S3591 and D3S1283. Human RAD18 protein (hRAD18) was found to interact with HHR6A and HHR6B. When co-expressed in yeast cells, stable hRAD18–HHR6A and hRAD18–HHR6B protein complexes were identified and purified to near homogeneity. Thus, through interaction and complex formation with HHR6A and HHR6B, RAD18 protein may play an important role in lesion bypass mech­anisms in humans. Consistent with its role as a fundamental lesion bypass protein, the RAD18 gene is ubiquitously expressed in various human tissues.  相似文献   

2.
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.  相似文献   

3.
The Rad51 protein in eukaryotic cells is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Several proteins showing sequence similarity to Rad51 have previously been identified in both yeast and human cells. In Saccharomyces cerevisiae, two of these proteins, Rad55p and Rad57p, form a heterodimer that can stimulate Rad51-mediated DNA strand exchange. Here, we report the purification of one of the representatives of the RAD51 family in human cells. We demonstrate that the purified RAD51L3 protein possesses single-stranded DNA binding activity and DNA-stimulated ATPase activity, consistent with the presence of "Walker box" motifs in the deduced RAD51L3 sequence. We have identified a protein complex in human cells containing RAD51L3 and a second RAD51 family member, XRCC2. By using purified proteins, we demonstrate that the interaction between RAD51L3 and XRCC2 is direct. Given the requirements for XRCC2 in genetic recombination and protection against DNA-damaging agents, we suggest that the complex of RAD51L3 and XRCC2 is likely to be important for these functions in human cells.  相似文献   

4.
The RAD51 gene is a eukaryotic homolog of rec A, a critical component in homologous recombination and DNA repair pathways in Escherichia coli . We have cloned the RAD51 homolog from Tetrahymena thermophila , a ciliated protozoan. Tetrahymena thermophila RAD51 encodes a 36.3 kDa protein whose amino acid sequence is highly similar to representative Rad51 homologs from other eukaryotic taxa. Recombinant Rad51 protein was purified to near homogeneity following overproduction in a bacterial expression system. The purified protein binds to both single- and double-stranded DNA, possesses a DNA-dependent ATPase activity and promotes intermolecular ligation of linearized plasmid DNA. While steady-state levels of Rad51 mRNA are low in normally growing cells, treatment with UV light resulted in a >100-fold increase in mRNA levels. This increase in mRNA was time dependent, but relatively independent of UV dose over a range of 1400-5200 J/m2. Western blot analysis confirmed that Rad51 protein levels increase upon UV irradiation. Exposure to the alkylating agent methyl methane sulfonate also resulted in substantially elevated Rad51 protein levels in treated cells, with pronounced localization in the macronucleus. These data are consistent with the hypothesis that ciliates such as T.thermophila utilize a Rad51-dependent pathway to repair damaged DNA.  相似文献   

5.
The RAD52 epistasis group genes are involved in homologous recombination, and they are conserved from yeast to humans. We have cloned a novel human gene, RAD54B, which is homologous to yeast and human RAD54. Human Rad54B (hRad54B) shares high homology with human Rad54 (hRad54) in the central region containing the helicase motifs characteristic of the SNF2/SWI2 family of proteins, but the N-terminal domain is less conserved. In yeast, another RAD54 homolog, TID1/RDH54, plays a role in recombination. Tid1/Rdh54 interacts with yeast Rad51 and a meiosis-specific Rad51 homolog, Dmc1. The N-terminal domain of hRad54B shares homology with that of Tid1/Rdh54, suggesting that Rad54B may be the human counterpart of Tid1/Rdh54. We purified the hRad54 and hRad54B proteins from baculovirus-infected insect cells and examined their biochemical properties. hRad54B, like hRad54, is a DNA-binding protein and hydrolyzes ATP in the presence of double-stranded DNA, though its rate of ATP hydrolysis is lower than that of hRad54. Human Rad51 interacts with hRad54 and enhances its ATPase activity. In contrast, neither human Rad51 nor Dmc1 directly interacts with hRad54B. Although hRad54B is the putative counterpart of Tid1/Rdh54, our findings suggest that hRad54B behaves differently from Tid1/Rdh54.  相似文献   

6.
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B(-/-) cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B(-/-) cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to gamma-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B(-/-) cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.  相似文献   

7.
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains.  相似文献   

8.
Rad51p is a eukaryotic homolog of RecA, the central homologous pairing and strand exchange protein in Escherichia coli. Rad54p belongs to the Swi2p/Snf2p family of DNA-stimulated ATPases. Both proteins are also important members of the RAD52 group which controls recombinational DNA damage repair of double-strand breaks and other DNA lesions in Saccharomyces cerevisiae. Here we demonstrate by genetic, molecular and biochemical criteria that Rad51 and Rad54 proteins interact. Strikingly, overexpression of Rad54p can functionally suppress the UV and methyl methanesulfonate sensitivity caused by a deletion of the RAD51 gene. However, no suppression was observed for the defects of rad51 cells in the repair of gamma-ray-induced DNA damage, mating type switching or spontaneous hetero-allelic recombination. This suppression is genetically dependent on the presence of two other members of the recombinational repair group, RAD55 and RAD57. Our data provide compelling evidence that Rad51 and Rad54 proteins interact in vivo and that this interaction is functionally important for recombinational DNA damage repair. As both proteins are conserved throughout evolution from yeasts to humans, a similar protein-protein interaction may be expected in other organisms.  相似文献   

9.
10.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.  相似文献   

11.
Until recently, the molecular mechanisms of translesion DNA synthesis (TLS), a process whereby a damaged base is used as a template for continued replication, was poorly understood. This area of scientific research has, however, been revolutionized by the finding that proteins long implicated in TLS are, in fact, DNA polymerases. Members of this so-called UmuC/DinB/Rev1/Rad30 superfamily of polymerases have been identified in prokaryotes, eukaryotes and archaea. Biochemical studies with the highly purified polymerases reveal that some, but not all, can traverse blocking lesions in template DNA. All of them share a common feature, however, in that they exhibit low fidelity when replicating undamaged DNA. Of particular interest to us is the Rad30 subfamily of polymerases found exclusively in eukaryotes. Humans possess two Rad30 paralogs, Rad30A and Rad30B. The RAD30A gene encodes DNA polymerase eta and defects in the protein lead to the xeroderma pigmentosum variant (XP-V) phenotype in humans. Very recently RAD30B has also been shown to encode a novel DNA polymerase, designated as Pol iota. Based upon in vitro studies, it appears that Pol iota has the lowest fidelity of any eukaryotic polymerase studied to date and we speculate as to the possible cellular functions of such a remarkably error-prone DNA polymerase.  相似文献   

12.
In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.  相似文献   

13.
P Cejka  V Vondrejs  Z Storchová 《Genetics》2001,159(3):953-963
The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.  相似文献   

14.
Rad52-dependent homologous recombination (HR) is regulated by the antirecombinase activities of Srs2 and Rqh1/Sgs1 DNA helicases in fission yeast and budding yeast. Functional analysis of Srs2 in Schizosaccharomyces pombe led us to the discovery of Sws1, a novel HR protein with a SWIM-type Zn finger. Inactivation of Sws1 suppresses the genotoxic sensitivity of srs2Delta and rqh1Delta mutants and rescues the inviability of srs2Delta rqh1Delta cells. Sws1 functions at an early step of recombination in a pro-recombinogenic complex with Rlp1 and Rdl1, two RecA-like proteins that are most closely related to the human Rad51 paralogs XRCC2 and RAD51D, respectively. This finding indicates that the XRCC2-RAD51D complex is conserved in lower eukaryotes. A SWS1 homolog exists in human cells. It associates with RAD51D and ablating its expression reduces the number of RAD51 foci. These studies unveil a conserved pathway for the initiation and control of HR in eukaryotic cells.  相似文献   

15.
Telomere maintenance requires the RAD51D recombination/repair protein   总被引:12,自引:0,他引:12  
The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are required in mammalian cells for normal levels of genetic recombination and resistance to DNA-damaging agents. We report here that RAD51D is also involved in telomere maintenance. Using immunofluorescence labeling, electron microscopy, and chromatin immunoprecipitation assays, RAD51D was shown to localize to the telomeres of both meiotic and somatic cells. Telomerase-positive Rad51d(-/-) Trp53(-/-) primary mouse embryonic fibroblasts (MEFs) exhibited telomeric DNA repeat shortening compared to Trp53(-/-) or wild-type MEFs. Moreover, elevated levels of chromosomal aberrations were detected, including telomeric end-to-end fusions, a signature of telomere dysfunction. Inhibition of RAD51D synthesis in telomerase-negative immortalized human cells by siRNA also resulted in telomere erosion and chromosome fusion. We conclude that RAD51D plays a dual cellular role in both the repair of DNA double-strand breaks and telomere protection against attrition and fusion.  相似文献   

16.
17.
The DNA replication machinery stalls at damaged sites on templates, but normally restarts by switching to a specialized DNA polymerase(s) that carries out translesion DNA synthesis (TLS). In human cells, DNA polymerase eta (poleta) accumulates at stalling sites as nuclear foci, and is involved in ultraviolet (UV)-induced TLS. Here we show that poleta does not form nuclear foci in RAD18(-/-) cells after UV irradiation. Both Rad18 and Rad6 are required for poleta focus formation. In wild-type cells, UV irradiation induces relocalization of Rad18 in the nucleus, thereby stimulating colocalization with proliferating cell nuclear antigen (PCNA), and Rad18/Rad6-dependent PCNA monoubiquitination. Purified Rad18 and Rad6B monoubiquitinate PCNA in vitro. Rad18 associates with poleta constitutively through domains on their C-terminal regions, and this complex accumulates at the foci after UV irradiation. Furthermore, poleta interacts preferentially with monoubiquitinated PCNA, but poldelta does not. These results suggest that Rad18 is crucial for recruitment of poleta to the damaged site through protein-protein interaction and PCNA monoubiquitination.  相似文献   

18.
19.
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.  相似文献   

20.
Cells activate DNA repair pathways and cell cycle checkpoints when they suffer damage to their genome. They also activate tolerance pathways that facilitate survival. In Escherichia coli, a mechanism known as postreplication repair (PRR) is used to bypass lesions that would otherwise present a physical block to DNA polymerase. PRR has also been proposed to occur in eukaryotic cells, although the partitioning of DNA synthesis to a discrete S-phase would suggest that it is only operative within a defined period of the cell cycle. Eukaryotic PRR has been most extensively studied in the budding yeast Saccharomyces cerevisiae. Two important genes for components of this repair pathway are RAD6, which encodes an ubiquitin-conjugating enzyme, and RAD18, which encodes a RING-finger protein and forms a heterodimer with Rad6p. Rad18p can also bind to DNA. We report here the identification of the Schizosaccharomyces pombe homologue of RAD18, which we have denoted rhp18. rhp18 mutants are hypersensitive to DNA-damaging agents, but show this hypersensitivity throughout the cell cycle. rhp18 mutants are characterised by a longer than usual DNA damage checkpoint arrest that is required for their residual viability following irradiation. Genetic analyses show that rhp18 controls a unique DNA damage repair/tolerance pathway that extends beyond the requirement to tolerate damage during S-phase, suggesting a broader definition of the function of this eukaryotic PRR protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号