首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The distribution of the sarcoplasmic reticulum and sarcolemmic tubules in the radula protractor muscle of the whelk, Busycon canaliculatum, has been investigated. The sarcoplasmic reticulum consists of an interconnected system of cisternae and tubular channels. The cisternae are closely associated with the sarcolemma. The tubular channels project from the cisternae into the interior of the cell and run parallel to the long axis of the myofilaments. Parallel tubular channels are interconnected with one another by short branches. This finding of an elaborate sarcoplasmic reticulum supports previous physiological work on this smooth muscle which indicated the presence of an intracellular compartmentalization of calcium ions. There is also an extensive system of tubular invaginations of the sarcolemma which we have termed sarcolemmic tubules. These tubules are 600 Å in diameter and about 0.5 microns in length. There is a substructure associated with the leaflet of the tubular membrane bordering the extracellular space. The sarcolemmic tubules penetrate only half a micron from the surface of the cell and interdigitate with the sarcoplasmic reticulum associated with the sarcolemma. Calculations have shown that the surface area of this smooth muscle cell is more than doubled by the presence of sarcolemmic tubules.  相似文献   

2.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

3.
Autocrine motility factor (AMF) is secreted by tumor cells and is capable of stimulating the motility of the secreting cells. In addition to being expressed on the cell surface, its receptor, AMF-R, is found within a Triton X-100 extractable intracellular tubular compartment. AMF-R tubules can be distinguished by double immunofluorescence microscopy from endosomes labeled with the transferrin receptor, lysosomes labeled with LAMP-2, and the Golgi apparatus labeled with beta-COP. AMF-R can also be separated from a LAMP-2 containing lysosomal fraction by differential centrifugation of MDCK cells and is found within a 100,000 g membrane pellet. By electron microscopic immunocytochemistry, AMF-R is localized predominantly to smooth vesicular and tubular membranous organelles as well as to a lesser extent to the plasma membrane and rough endoplasmic reticulum. AMF-R tubules have a variable diameter of 50-250 nm and can acquire an elaborate branched morphology. By immunofluorescence microscopy, AMF-R tubules are clearly distinguished from the calnexin labeled rough endoplasmic reticulum and AMF-R tubule expression is stable to extended cycloheximide treatment. The AMF-R tubule is therefore not a biosynthetic subcompartment of the endoplasmic reticulum. The tubular morphology of the AMF-R tubule is modulated by both the actin and microtubule cytoskeletons. In a similar fashion to that described previously for the tubular lysosome and endoplasmic reticulum, the linear extension and peripheral cellular orientation of the AMF-R tubule are dependent on the integrity of the microtubule cytoskeleton. The AMF-R tubule may thus form part of a family of microtubule- associated tubular organelles.  相似文献   

4.
Summary The fine structure of the collecting tubules of the trout and killifish kidney was studied. These tubules are surrounded by layers of smooth muscle cells which are commonly innervated. The nerve terminals contain synaptic vesicles and, occasionally, a few dense-cored granules as well. Capillaries occur in the connective tissue space between these smooth muscle cells and the collecting tubule. Epithelial cells of the collecting tubules contain abundant mitochondria and a well developed membrane system displaying parallel arrays, and were considered to be actively involved in the transport of materials. In the trout, the collecting tubules contain peculiar cells in addition to regular tubule cells. The fine structure of these peculiar cells is highly reminiscent of that of gill chloride cells. The significance of these findings may be summarized as follows: If the smooth muscles around the collecting tubule contract under neural influence, intratubular pressure may be increased and, thus affect glomerular filtration rate. The contraction of these muscles may also cause the collapse of peritubular capillaries, affecting the transport activity of tubule cells.  相似文献   

5.
H. -Dietmar Behnke 《Protoplasma》1996,193(1-4):213-221
Summary Bundles of decorated tubules found in the sieve elements ofNymphaea have been studied with the transmission electron microscope. Comparatively straight tubules (100 nm in diameter) arise from the endoplasmic reticulum during early stages of sieveelement development and subsequently associate into bundles of up to 100 tubules that parallel the longitudinal cell axis. From the start of their formation the tubules are structurally distinct from other ER profiles due to their dense decoration with particles. High magnifications reveal an orderly array of the particles (about 24 surround a 100 nm tubule) and suggest a modification of their membrane so that it is no longer dissolvable into a regular three-layered structure. Later during sieve-element ontogeny the decorated tubules get invaginated by smooth ER membranes, thereby squeezing out the intratubular (extracytoplasmic) space. As a result a double mantle is formed that surrounds a plasmatic cylinder. Decorated 100 nm tubules with inner membranes are present in enucleate mature sieve elements ofNymphaea alba andN. tuberosa. Considerably larger tubules (about 200 nm in diameter) were found inN. Candida andN. tetragona and occasionally also inNuphar and Barclaya, two other genera from the same family. The decoration of the tubules and their subsequent invagination by smooth membranes are discussed with respect to the controlled autolysis of sieve elements.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

6.
Four differentiated Malpighian tubules (primary tubules) extend from the junction of the midgut and hindgut in newly hatched Periplaneta americana. Secondary tubules begin to develop near the base of the primary tubules before hatching and successive nymphal molts. The newly initiated tubules undergo cell division and extensive elongation through the middle of the following intermolt period. During this time, the cells of the distal, middle, and lower middle tubule regions are surrounded by a cellular sheath, have few cytoplasmic processes extending along their basal surfaces, have a small or nonexistent lumen, and contain extremely dilated cisternae of endoplasmic reticulum. The cellular sheath differentiates into the muscle which coils around the mature tubule. Tubules which begin development toward the end of one intermolt period begin to undergo cytodifferentiation toward the end of the next intermolt period. By the middle of an additional intermolt period, the basal infoldings and microvilli of cells in the distal, middle, and lower middle regions have the conformations typical for those regions in differentiated tubules; granular concretions and stellate cells are present within the middle region of the tubule.  相似文献   

7.
Summary Smooth muscle cells from rat vas deferens were studied by electron microscopy. Vesicular and tubular membranous structures containing an electron-opaque material were found in the smooth muscle cells. Similar structures were also found in a subfraction (F3) of microsomes of vas deferens smooth muscle which was shown to be rich in both plasma membrane and putative endoplasmic reticulum markers. Treatment of the tissues with calcium-free Krebs solution containing EGTA prior to fixation eliminated almost completely the presence of these dense-cored membranous structures (DMS), whereas incubation of the subcellular membrane fraction with EGTA solution had no effect on the appearance of the DMS. Plasma membrane infoldings were found in the smooth muscle cells extending well into their interior. Horseradish peroxidase penetrates vesicles in a location similar to that of DMS in smooth muscle cells, suggesting that some of the DMS may be connected to the extracellular space. We conclude that the dense-core material within the DMS is calcium dependent. We also suggest that some of the DMS represent infoldings of the plasma membrane extending into the cell's interior.  相似文献   

8.
Summary The cells of the mesenteric caeca in the midgut of certain insects possess a labyrinth of transepithelial cisternae. Their existence can be seen in thin sections of lanthanum-incubated tissue, where the tracer enters not only the intercellular clefts but also membranous cisternae which are inpocketings from, and, in continuity with, both the lateral clefts and basal membrane. These infoldings, which are numerous, run from the basal or lateral surfaces into the perinuclear region of the cells, where they are found, laden with lanthanum, as smooth cisternae or vesicles in the peripheral cytoplasm near the plasma membrane. These can be followed in serial sections and are quite distinct from other sub-surface cisternae of the lateral borders which are studded with ribosomes on the cytoplasmic surface. Near the luminal surface, tracer-laden structures in the form of vesicles and granules become increasingly predominant over those in the form of cisternae. Freeze-fracture replicas confirm the above observations, in that the plasma membrane of the intercellular cleft can be characterized as such unequivocally, since it exhibits smooth septate junctional E face grooves and P face ridges. Lateral infoldings, cisternae and vesicles can be seen arising directly from these junction-bearing membranes. The transepithelial cisternae and vesicles may be the morphological basis of an insect transcellular transport system, comparable to the tubulocisternal endoplasmic reticulum present in the transporting secretory and absorptive epithelia of vertebrate tissues. However, in insect midgut caecal epithelia, the cisternae appear to be, albeit presumably transiently, in direct continuity with the extracellular space, forming a plasma membrane reticular system which seems not to be the case with the tubulo-cisternal endoplasmic reticulum which terminates in subsurface cisternae.  相似文献   

9.
The membrane systems of skeletal muscle were examined after tannic acid fixation. A new structure consisting of bridges spanning the junctional gap is described, and a model is proposed in which the cytoplasmic but not the luminal membrane leaflets of the transverse tubule and of the junctional sarcoplasmic reticulum (SR) are continuous. The globular particles (presumably the Ca-binding proteins) within the terminal cisternae were arranged in longitudinal rows and appeared adherent to the junctional membrane. The junctional gap was present in negatively stained, frozen thin sections of fixed muscles. Negatively staining material occured within the junctional gap. The cytoplasmic leaflets of the longitudinal, intermediate, and terminal cisterna regions of the SR exhibited a thick coat of densely staining material compatible with the presence of the Ca-ATPase. Similar bridges were also observed at the surface membrane-SR close coupling sites of vascular smooth muscle.  相似文献   

10.
The hepatopancreas of the red-jointed fiddler crab, Uca minax, is a bilateral evagination of the midgut, composed of numerous blind-ending tubules. Groups of these tubules empty into collecting ducts which join to form the main hepatopancreatic duct. Ultrastructural examination of tubules from the hepatopancreas of adult fiddler crabs revealed four major cell types, designated as E, R, B, and F cells. The E cells were found at the apex of the tubule and were assumed to serve as meristematic tissue. The R cells were most numerous and were scattered along the length of the tubule. Characterized by extensive smooth and rough endoplasmic reticulum and abundant lipid and glycogen reserves, the R cell was assumed to function in absorption and storage of the organic products of digestion. The B cells were recognized by the presence of a single, large apical vacuole that likely functioned in the secretion of digestive enzymes into the lumen of the hepatopancreas. The F cells, which contained extensive amounts of rough endoplasmic reticulum, were believed to be responsible for the synthesis of digestive enzymes. Electron microscopy of the hepatopancreas of crabs exposed to naphthalene for 5 days revealed that those cells with abundant membrane lipids (F cells) and abundant storage lipids (R cells) were most altered while those cells having little membrane or storage lipids (B and E cells) were only slightly altered. Furthermore, alterations in the F and R cells were not uniform along the length of the tubule, but increased in severity toward the proximal end.  相似文献   

11.
Summary The structure of the salivary gland of the dipteran insect Rhynchosciara angelae in a defined stage of the larval development, characterized by the synthesis and storage of secretion product, is described. Observations were made with both Nomarski optics and electron microscopy. Filiform projections extending into the lumen of the gland were observed in the apical portion of the cells. At the basal region junctions, characterized as hemidesmosomes, were observed between the membrane of the cell and the basal lamina. The plasma membrane presents numerous infoldings into the cell increasing considerably the surface area at this region. Throughout the cytoplasm of the gland cells numerous mitochondria, Golgi complexes, microtubules, profiles of endoplasmic reticulum, secretion granules and glycogen granules were observed. Carbohydrates were detected on ultrathin sections by using the periodic acid-silver methenamine and the periodic acid-thiosemicarbazide-silver proteinate techniques.  相似文献   

12.
We studied the ultrastructural distribution of fibronectin in the smooth muscle layer of mouse small intestine with affinity-purified antibodies using the immunogold technique. Fibronectin was present over the pericellular area extending from the cell membrane to the extracellular matrix beyond the basal lamina. Distribution of the glycoprotein over the pericellular area was heterogeneous, i.e., it was localized more abundantly in the narrow space between smooth muscle cells, the gaps having a width of 60-80 nm where the two dense bands in adjacent cells matched each other. Such localization suggests that fibronectin contributes to cell adhesion. Within the basement membrane, gold label was localized both in lamina lucida and lamina densa, more densely in the latter than in the former. Fibronectin was also co-distributed with collagen fibers in the extracellular matrix. Within smooth muscle cells, gold particles were observed on rough endoplasmic reticulum and secretory vesicle-like structures. These results suggest that smooth muscle cells synthesize fibronectin and secrete it as a component of the basal lamina and extracellular matrix.  相似文献   

13.
The ultrastructure of normal and glycerol treated fibers of the closer muscle of the ghost crab, Ocypode cursor, was studiedmthe muscle is composed of presumably phasic (short sarcomeres) and tonic (long sarcomeres) fibers, the latter greatly predominating. Horseradish peroxidase (HRP) was used as an extracellular tracer to delineate the tubular system (TS), and to determine to what extent this system becomes detached from the extracellular space as a result of glycerol treatment. Sarcolemmal clefts invade deeply into the muscle at Z-lines and I-bands; tubules invaginate into the muscle from the clefts and from the surface sarcolemma at the Z-lines, A-I overlaps and A-bands. A tubules are in frequent diadic or tetradic contact with the sarcoplasmic reticulum (SR), whereas Z tubules appear to be randomly associated with SR, terminal cisterns (TC) and Z-line fibrils. When HRP was administered to normal muscle, black reaction product was found adjacent to the outer surface of the sarcolemma, within the clefts and within profiles of the TS throughout the tissue. In glycerol treated muscle peripheral vacuolation frequently occurred; black reaction product penetrated only as far as the vacuoles and into dilated Z-line tubules, but was virtually absent from the rest of the TS. This lack of continuity between the extracellular space and the A tubules indicated disruption or constriction of the A tubules as a result of glycerol treatment, although Z tubule contact with the extracellular space appeared unimpaired. These findings provide ultrastructural correlates of the electrophysiological changes produced by glycerol treatment of the closer muscle of the ghost crab (Papir, 1973), namely, interference with excitation-contraction (e-c) coupling. The random association of the Z tubules with SR and TC, and their resistance to disruption by glycerol treatment, tend to endorse the claims that the Z tubules in crustacean muscle are not directly involved in e-c coupling (Brandt et al., 1965; Peachey, 1967; Selverston, 1967).  相似文献   

14.
The alpha macroglobulins of rat serum.   总被引:5,自引:0,他引:5       下载免费PDF全文
Cortex of rat kidney was homogenized and fractions enriched in plasma membrane, endoplasmic reticulum or brush border were prepared by several techniques of differential centrifugation. The identity and homogeneity of the membrane fragments were investigated by assaying marker enzymes and by transmission and scanning electron microscopy. Kallikrein was present in both plasma-membrane- and endoplasmic-reticulum-enriched fractions isolated by two fractionation procedures. Kallikrein was highly concentrated in a plasma-membrane fraction but was absent from the brush-border membrane of proximal tubular cells. Cells of transplanted renal tumours of the rat, originating from the proximal tubule, had no kallikrein activity. Kininase activity, angiotensin I-converting enzyme (kininase II) and angiotensinase were found in a plasma-membrane-enriched fraction and especially in the fraction containing isolated brush border. It is suggested that after renal kallikrein is synthesized on endoplasmic reticulum, it is subsequently reoriented to a surface membrane for activation and release. Renal kallikrein may enter the tubular filtrate distal to the proximal tubules. The brush-border membrane of proximal tubule is the major site of inactivation of kinins and angiotensin II..  相似文献   

15.
Summary Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.  相似文献   

16.
The ultrastructure of the colon of Locusta migratoria is described. The colon is lined by a thick cuticle that, for the most part, adheres to the underlying epithelium. The cuboid epithelial cells are characterized by moderate invaginations of the apical and, to a lesser extent, basal plasma membranes; the lateral plasma membranes are relatively flat. The bulk of the mitochondria are located in the apical region of the cell and are not particularly associated with any of the plasma membranes. The basal region of the cells contains much rough endoplasmic reticulum, glycogenlike granules, and a predominance of spherical, electron-dense bodies of various sizes. Where muscle fibers make contact with the epithelium, the cells are much reduced; the cytoplasm is usually less electron-dense, and, typically, the nucleus has a thick layer of granular material associated with the inner nuclear membrane. The apical and basal plasma membranes of the reduced epithelial cells contain numerous hemidesmosomes. The apical hemidesmosomes occur in pairs around an extracellular space that contains electron-opaque material. The latter forms tonofibrillae that extend into the endocuticle. Bundles of microtubules are associated with the hemidesmosomes. The tubules traverse the cell from the apical to the basal region. The possible significance of these findings is discussed.  相似文献   

17.
Using an intracellularly trapped dye, quin 2, effects of K+-depolarization on cytosolic free calcium concentrations were recorded microfluorometrically in rat aorta vascular smooth muscle cells in primary culture. When the cells were exposed to high extracellular K+ in Ca+-free media containing 2mM EGTA, there was a transient and dose-dependent elevation of cytosolic Ca2+ concentrations. However, the concentration of the cytosolic Ca2+ was not elevated when the intracellularly stored Ca2+ was depleted by the repetitive treatment with caffeine prior to the application of high K+. Thus depolarization of plasma membrane, per se, directly induces a release of Ca2+ from intracellular storage sites in vascular smooth muscle cells, and the main fraction of this released Ca2+ is derived from the caffeine sensitive storage sites; perhaps from the sarcoplasmic reticulum.  相似文献   

18.
The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.  相似文献   

19.
Summary The ultrastructural localization of glucose 6-phosphatase activity was investigated in the proximal convoluted tubule cells of the rat kidney. The reaction product for the enzyme activity was present in the endoplasmic reticulum and nuclear envelope, as reported for the hepatic enzyme and others, but was absent from the brush border, plasma membrane and other organelles. The metabolic significance of the association of this enzyme with the endoplasmic reticulum and the role of the enzyme in the active reabsorption and transport of glucose in the renal tubules are discussed.  相似文献   

20.
Ca++-Mg++-dependent ATPase and calsequestrin, the major intrinsic and extrinsic proteins, respectively, of the sarcoplasmic reticulum, were localized in cryostat sections of adult rat skeletal muscle by immunofluorescent staining and phase-contrast microscopy. Relatively high concentrations of both the ATPase and calsequestrin were found in fast-twitch myofibers while a very low concentration of the ATPase and a moderate concentration of calsequestrin were found in slow-twitch myofibers. These findings are consistent with previous biochemical studies of the isolated sarcoplasmic reticulum of slow-twitch and fast-twitch mammalian muscles. The distribution of the ATPase in muscle fibers is distinctly different from that of calsequestrin. While calsequestrin is present only near the interface between the I- and A-band regions of the sarcomere, the ATPase is found throughout the I-band region as well as in the center of the A-band region. In comparing these results with in situ ultrastructural studies of the distribution of sarcoplasmic reticulum in fast-twitch muscle, it appears that the ATPase is rather uniformly distributed throughout the sarcoplasmic reticulum while calsequestrin is almost exclusively confined to those regions of the membrane system which correspond to terminal cisternae. Fluorescent staining with these antisera was not observed in vascular smooth muscle cells present in the cryostat sections of the mammalian skeletal muscle used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号