首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the mechanisms regulating the initiation of floral development in Arabidopsis, a construct containing beta-glucuronidase (GUS) gene driven by APETALA1 promoter (AP1::GUS) was introduced into emf fwa and emf ft double mutants. GUS activity was strongly detected on shoot meristem of emf1-1 single mutants harboring AP1::GUS construct just 5 d after germination. By contrast, GUS activity was undetectable on emf1-1 fwa-1, emf1-1 ft-1, emf2-1 fwa-1, emf2-3 fwa-1 and emf2-3 ft-1 double mutants harboring AP1::GUS construct 10 d after germination. GUS activity was only weakly detected on the apical meristem of 20-day-old emf1-1 fwa-1 and emf2-1 fwa-1 seedlings. During this time, only sessile leaves were produced. Further analysis indicated that AP1 was strongly expressed in 10-day-old emf1-1 and emf2-1 single mutants. Its expression was significantly reduced in all emf1-1 or emf2-1 late-flowering double mutants tested. Similar to AP1, the expression of LEAFY (LFY) was also high in emf1-1 and emf2-1 single mutants and reduced in emf1-1 or emf2-1 late-flowering double mutants. Our results indicate that the precocious expression of AP1 and LFY is dependent not only on the low EMF and FWA activities but also on the expression of most of the late-flowering genes such as FT, FCA, FE, CO and GI. These data also reveal that most late-flowering genes may function downstream of EMF or in pathways distinct from EMF to activate genes specified floral meristem identity during shoot maturation in Arabidopsis.  相似文献   

2.
To investigate the genetic mechanisms regulating the transition from the vegetative to reproductive growth in Arabidopsis, double mutants between three different early-flowering mutants, early flowering 1-1, 2-1, 3-1, (elf 1-1, 2-1, 3-1) and five different late-flowering mutants, gi-1, ft-1, fwa-1, ld-1, and fca-9, were constructed and phenotypes analyzed. Double mutants in all combinations displayed the late-flowering phenotypes which resembled their respective late-flowering parents in both flowering time and the number of vegetative leaves produced. The results indicate that five late-flowering mutants are epistatic to all three early-flowering mutants tested here. This epistatic relationship suggests that ELF1, ELF2, and ELF3 genes function upstream of these five late-flowering genes no matter if they are functioning in autonomous or photoperiod pathways. These three early-flowering genes may negatively modify the activity of most late-flowering genes to influence the time of the vegetative-to-reproductive transition in Arabidopsis.  相似文献   

3.
An AP1/AGL9 group of MADS box gene, OMADS1, with extensive homology to the Arabidopsis AGAMOUS-like 6 gene (AGL6) was characterized from orchid (Oncidium Gower Ramsey). OMADS1 mRNA was detected in apical meristem and in the lip and carpel of flower. Yeast two-hybrid analysis indicated that OMADS1 is able to strongly interact with OMADS3, a TM6-like protein that was involved in flower formation and floral initiation in orchid. Transgenic Arabidopsis and tobacco ectopically expressed OMADS1 showed similar novel phenotypes by significantly reducing plant size, flowering extremely early, and losing inflorescence indeterminacy. In addition, homeotic conversion of sepals into carpel-like structures and petals into staminoid structures were also observed in flowers of 35S::OMADS1 Arabidopsis. This result indicated that OMADS1 was involved in floral formation and initiation in transgenic plants. Further analysis indicated that the expression of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and flower meristem identity genes LEAFY (LFY), APETALA1 (AP1) was significantly up-regulated in 35S::OMADS1 transgenic Arabidopsis plants. Furthermore, ectopic expression of OMADS1 rescued late-flowering phenotype in gi-1, co-3 but not for ft-1 and fwa-1 mutants. These results supported that ectopic expression of OMADS1 influenced flower transition and formation by acting as an activator for FT and SOC1 in Arabidopsis.  相似文献   

4.
5.
The inflorescence meristem produces floral primordia that remain undifferentiated during the first stages of flower development. Genes controlling floral meristem identity include LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), LATE MERISTEM IDENTITY 1 (LMI1), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE24 (AGL24). The lfy mutant shows partial reversions of flowers into inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24 and svp single mutants or with the agl24 svp double mutant enhances the lfy phenotype and that the lfy agl24 svp triple mutant phenocopies the lfy ap1 double mutant. Analysis of the molecular interactions between LFY, AGL24 and SVP showed that LFY is a repressor of AGL24 and SVP, whereas LMI1 is a positive regulator of these genes. Moreover, AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all these genes are important for establishing floral meristem identity, regulatory loops are probably important to maintain the correct relative expression levels of these genes.  相似文献   

6.
Tzeng TY  Hsiao CC  Chi PJ  Yang CH 《Plant physiology》2003,133(3):1091-1101
Two AGL2-like MADS-box genes, Lily MADS Box Gene (LMADS) 3 and LMADS4, with extensive homology of LMADS3 to the Arabidopsis SEPALLATA3 were characterized from the lily (Lilium longiflorum). Both LMADS3 and LMADS4 mRNA were detected in the inflorescence meristem, in floral buds of different developmental stages, and in all four whorls of the flower organ. LMADS4 mRNA is also expressed in vegetative leaf and in the inflorescence stem where LMADS3 expression is absent. Transgenic Arabidopsis, which ectopically expresses LMADS3, showed novel phenotypes by significantly reducing plant size, flowering extremely early, and loss of floral determinacy. By contrast, 35S::LMADS4 transgenic plants were morphologically indistinguishable from wild-type plants. The early-flowering phenotype in 35S::LMADS3 transgenic Arabidopsis plants was correlated with the up-regulation of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1, LUMINIDEPENDENS, and flower meristem identity genes LEAFY and APETALA1. This result was further supported by the ability of 35S::LMADS3 to rescue the late-flowering phenotype in gigantea-1 (gi-1), constans-3 (co-3), and luminidependens-1 but not for ft-1 or fwa-1 mutants. The activation of these flowering time genes is, however, indirect because their expression was unaffected in plants transformed with LMADS3 fused with rat glucocorticoid receptor in the presence of both dexamethasone and cycloheximide.  相似文献   

7.
拟南芥LEAFY基因在花发育中的网络调控及其生物学功能   总被引:15,自引:0,他引:15  
王利琳  梁海曼  庞基良  朱睦元 《遗传》2004,26(1):137-142
重点综述了拟南芥花分生组织特征基因——LEAFY(LFY)基因及其同源基因在花发育中的网络调控及其生物学功能。LFY基因广泛表达于高等植物的营养性和生殖性组织。LFY基因需要与其他基因相互作用,並且表达量达到一定水平时才能促进成花。LFY基因处于成花调控网络的关键位置,不仅调控开花时间和花转变,而且在花序和花的发育中也起重要作用。碳源、植物激素等因子直接或间接地影响LFY基因的表达和作用。提示通过掌握LFY基因的表达调控规律进一步探讨成花机理的可行性。 Abstract:Recent research progress on regulation network and biological roles of LFY gene in Arabidopsis thaliana and its homologue genes in floral development are reviewed emphatically in the present paper.LFY gene expresses widely in both vegetative and reproductive tissues in different higher plants,therefore investigation on role of LFY gene on flowering is of general significance.LFY gene plays an important role to promote flower formation by interaction and coordination with other genes,such as TFL,EMF,AP1,AP2,CAL,FWA,FT,AP3,PI,AG,UFO,CO,LD,GA1 etc,and a critical level of LFY expression is essential.LFY gene not only controls flowering-time and floral transition,but also plays an important role in inflorescence and floral organ development.It was situated at the central site in gene network of flowering regulation,positively or negatively regulates the level or activities of flowering-related genes.Some physiological factors,such as carbon sources,phytohormones,affect directly or indirectly the expression and actions of LFY gene.This indicates that level of LFY expression can also be regulated with physiological methods.It is probable that we can explain the principal mechanism of flowering by regulation network of LFY gene.  相似文献   

8.
The early-flowering habit of rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana) is, in part, due to the genes of the autonomous floral-promotion pathway (AP). The AP promotes flowering by repressing expression of the floral inhibitor FLOWERING LOCUS C (FLC). AP mutants are therefore late flowering due to elevated levels of FLC, and this late-flowering phenotype is eliminated by loss-of-function mutations in FLC. To further investigate the role of the AP, we created a series of double mutants. In contrast to the phenotypes of single mutants, which are largely limited to delayed flowering, a subset of AP double mutants show a range of defects in growth and development. These phenotypes include reduced size, chlorophyll content, growth rate, and fertility. Unlike the effects of the AP on flowering time, these phenotypes are FLC independent. Recent work has also shown that two AP genes, FCA and FPA, are required for the repression and, in some cases, proper DNA methylation of two transposons. We show that similar effects are seen for all AP genes tested. Microarray analysis of gene expression in AP single and double mutants, however, suggests that the AP is not likely to play a broad role in the repression of gene expression through DNA methylation: very few of the genes that have been reported to be up-regulated in DNA methylation mutants are misexpressed in AP mutants. Together, these data indicate that the genes of the AP play important and sometimes functionally redundant roles in aspects of development in addition to flowering time.  相似文献   

9.
Arabidopsis MET1 cytosine methyltransferase mutants   总被引:19,自引:0,他引:19  
We describe the isolation and characterization of two missense mutations in the cytosine-DNA-methyltransferase gene, MET1, from the flowering plant Arabidopsis thaliana. Both missense mutations, which affect the catalytic domain of the protein, led to a global reduction of cytosine methylation throughout the genome. Surprisingly, the met1-2 allele, with the weaker DNA hypomethylation phenotype, alters a well-conserved residue in methyltransferase signature motif I. The stronger met1-1 allele caused late flowering and a heterochronic delay in the juvenile-to-adult rosette leaf transition. The distribution of late-flowering phenotypes in a mapping population segregating met1-1 indicates that the flowering-time phenotype is caused by the accumulation of inherited defects at loci unlinked to the met1 mutation. The delay in flowering time is due in part to the formation and inheritance of hypomethylated fwa epialleles, but inherited defects at other loci are likely to contribute as well. Centromeric repeat arrays hypomethylated in met1-1 mutants are partially remethylated when introduced into a wild-type background, in contrast to genomic sequences hypomethylated in ddm1 mutants. ddm1 met1 double mutants were constructed to further our understanding of the mechanism of DDM1 action and the interaction between two major genetic loci affecting global cytosine methylation levels in Arabidopsis.  相似文献   

10.
CONSTANS (CO) promotes flowering of Arabidopsis in response to long photoperiods. Transgenic plants carrying CO fused with the cauliflower mosaic virus 35S promoter (35S::CO) flowered earlier than did the wild type and were almost completely insensitive to length of day. Genes required for CO to promote flowering were identified by screening for mutations that suppress the effect of 35S::CO. Four mutations were identified that partially suppressed the early-flowering phenotype caused by 35S::CO. One of these mutations, suppressor of overexpression of CO 1 (soc1), defines a new locus, demonstrating that the mutagenesis approach is effective in identifying novel flowering-time mutations. The other three suppressor mutations are allelic with previously described mutations that cause late flowering. Two of them are alleles of ft, indicating that FT is required for CO to promote early flowering and most likely acts after CO in the hierarchy of flowering-time genes. The fourth suppressor mutation is an allele of fwa, and fwa soc1 35S::CO plants flowered at approximately the same time as co mutants, suggesting that a combination of fwa and soc1 abolishes the promotion of flowering by CO. Besides delaying flowering, fwa acted synergistically with 35S::CO to repress floral development after bolting. The latter phenotype was not shown by any of the progenitors and was most probably caused by a reduction in the function of LEAFY. These genetic interactions suggest models for how CO, FWA, FT, and SOC1 interact during the transition to flowering.  相似文献   

11.
12.
13.
The time of flowering in Arabidopsis is controlled by multiple endogenous and environmental signals. Some of these signals promote the onset of flowering, whereas others repress it. We describe here the isolation and characterization of two allelic mutations that cause early flowering and define a new locus, EARLY BOLTING IN SHORT DAYS (EBS). Acceleration of flowering time in the ebs mutants is especially conspicuous under short-day photoperiods and results from a reduction of the adult vegetative phase of the plants. In addition to the early flowering phenotype, ebs mutants show a reduction in seed dormancy, plant size, and fertility. Double mutant analysis with gibberellin-deficient mutants indicates that both the early-flowering and the precocious-germination phenotypes require gibberellin biosynthesis. Analysis of the genetic interactions among ebs and several mutations causing late flowering shows that the ft mutant phenotype is epistatic over the early flowering of ebs mutants, suggesting that the precocious flowering of ebs requires the FT gene product. Finally, the ebs mutation causes an increase in the level of expression of the floral homeotic genes APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) and partially rescues the mutant floral phenotype of leafy-6 (lfy-6) mutants. These results suggest that EBS participates as a negative regulator in developmental processes such as germination, flowering induction, and flower organ specification.  相似文献   

14.
15.
Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele of a nuclear gene LEAFY (LFY), that has an inflorescence composed only of type 2-like metamers. These data suggest that the LFY gene is required for the development of type 3 metamers and that the transition from type 2 to type 3 metamers is a developmental step distinct from that between vegetative and reproductive growth (type 1 to type 2 metamers). Results from double mutant analysis, showing that lfy-1 is epistatic to the floral organ homeotic gene ap2-6, are consistent with the hypothesis that a functional LFY gene is necessary for the expression of downstream genes controlling floral organ identity.  相似文献   

16.
FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family.  相似文献   

17.
18.
FPF1 modulates the competence to flowering in Arabidopsis   总被引:6,自引:0,他引:6  
During the transition to flowing the FPF1 gene is expressed in the peripheral zone of apical meristems and in floral meristems of Arabidopsis. Constitutive expression of FPF1 causes early flowering in Arabidopsis under both long-day and short-day conditions and leads to a shortened juvenile phase as measured by the trichome distribution on the abaxial leaf surface. In the classical late flowering mutants, overexpression of FPF1 compensates partially for the late flowering phenotype, indicating that FPF1 acts downstream or in a parallel pathway to the mutated genes. The co-overexpression of 35S::AP1 with 35S::FPF1 leads to a synergistic effect on the shortening of the time to flowering under short-day conditions. The co-overexpression of 35S::FPF1 and 35S::LFY, however, shows only an additive reduction of flowering time and the conversion of nearly every shoot meristem, except the inflorescence meristem, to a floral meristem under the same light conditions. In addition, the constitutive expression of FPF1 attenuates the severe lfy-1 phenotype under short days and phenocopies to a great extent the lfy-1 mutant grown under long-day conditions. Thus, we assume that FPF1 modulates the competence to flowering of apical meristems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号