首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunofluorescence-based assays have been developed to detect and quantitate Cryptosporidium parvum infection in cell culture. Here, we describe a method that tracks and quantifies the early phase of attachment and invasion of C. parvum sporozoites using a fluorescent dye. Newly excysted sporozoites were labeled with the amine-reactive fluorescein probe carboxyfluorescein diacetate succinimidyl esters (CFSE) using an optimized protocol. The initial invasion of cells by labeled parasites was detected with fluorescent or confocal microscopy. The infection of cells was quantified by flow cytometry. Comparative analysis of infection of cells with CFSE-labeled and unlabeled sporozoites showed that the infectivity of C. parvum was not affected by CFSE labeling. Quantitative analysis showed that C. parvum Iowa and MD isolates were considerably more invasive than Cryptosporidium hominis isolate TU502. Unlike immunofluorescent assays, CFSE labeling permitted the tracking of the initial invasion of C. parvum. Such an assay may be useful for studying the dynamics of host cell-parasite interaction and possibly for drug screening.  相似文献   

2.
In order to develop a vaccine against cryptosporidiosis in cattle, we constructed a recombinant bovine herpesvirus-1 (BHV-1) expressing an immunodominant surface protein, p23, of Cryptosporidium parvum sporozoites. In the recombinant virus, the p23 gene under the control of a CAG promoter and a gene coding for an enhanced green fluorescent protein were integrated into the gG gene of BHV-1. Despite a low frequency of homologous recombination, cloning of the recombinants was easy because of the specific fluorescence of the plaques formed by recombinants. These plaques were among the plaques of the nonfluorescent parental virus. All clones selected for fluorescence also contained the p23 gene. In MDBK cells infected with the recombinant BHV-1, the antibody against the p23 protein recognized the p23 protein as an approximately 23-kDa specific band in Western blotting analysis. Rabbits immunized with the recombinant produced IgG against the p23 protein. It was also demonstrated that the sera of immunized rabbits reduced infection of C. parvum sporozoites in HCT-8 cells. The serum of an immunized rabbit reduced infection compared with the normal rabbit serum control. These results indicate that the recombinant BHV-1 induces neutralizing antibodies in rabbits.  相似文献   

3.
ABSTRACT. The human enterocytic cell lines Caco-2, HT29, HCT8 and the Caco-2 clones TC7 and PF11 were studied for their ability to support Cryptosporidium parvum development. Following the addition in cultures of either oocysts or excysted sporozoites, immunofluorescent and transmission electron microscopy revealed the presence of all stages of the parasite life cycle by both procedures, and no difference in the ration of infected cells was found among cell lines. More oocysts were seen in cell monolayers infected with oocysts than with sporozoites (p < 0.0001). The number of meronts observed was the same after either oocysts or sporozoites inoculation. Data suggest that the two methods yield a same cell infection rate.  相似文献   

4.
Cryptosporidium parvum first interacts with enterocytes when sporozoites penetrate the host plasma membrane. We have developed a shell vial assay using human embryonic Intestine 407 cells and purified C. parvum sporozoites to study this process. Sporozoites were incubated in culture medium with various carbohydrates and lectins, and the suspensions were then added to the cell monolayers. Following incubation, the monolayers were fixed and stained and the number of schizonts were counted. No decreases in sporozoite motility or Intestine 407 cell viability were observed with carbohydrate or lectin treatment. N-Acetyl-D-glucosamine, chitobiose and chitotriose inhibited C. parvum infection, compared to 5 other tested carbohydrates. Wheat germ agglutinin reduced penetration and concanavalin A enhanced schizont formation, when compared to 8 other lectins. Next, we pretreated sporozoites or Intestine 407 cells with wheat germ agglutinin and concanaval in A prior to sporozoite inoculation. Wheat germ agglutinin treatment of sporozoites or cells equally caused a reduction in C. parvum infection, while enhancement was only observed when Intestine 407 cell were pretreated with concanavalin A. These data suggest that glycoproteins with terminal N-acetyl-D-glucosamine residues may play a role in C. parvum adhesion or penetration of enterocytes. Also, host glycoproteins with concanavalin A-like activity may play a role in these processes.  相似文献   

5.
This study was focused on the effects of microfilament inhibitor, Cytochalasin D (CD) on the invasiveness of sporozoites of Cryptosporidium spp. into the host cells. MDCK and AGS cell lines were used as host cells for C. parvum and C. muris, respectively. When MDCK cells were pretreated with CD for 1 hr before inoculation of the sporozoites, C. parvum infection was significantly inhibited when compared to the control cells. These inhibitory effects of CD on the rate of infection were dose-dependent. In addition, C. muris infection was hampered when AGS cell lines were pretreated with CD. However, the capability of invasiveness of the sporozoites into the host cells was not greatly influenced by the pretreatment of sporozoites with CD before infection. These results suggest that microfilaments of host cells, rather than parasites, play an important role for the invasion of Cryptosporidium spp.  相似文献   

6.
Parasites from the Cryptosporidium genus are the most common cause of waterborne disease around the world. Successful management and prevention of this emerging disease requires knowledge of the diversity of species causing human disease and their zoonotic sources. This study employed a spatiotemporal approach to investigate sporadic human cryptosporidiosis in New South Wales, Australia, between January 2008 and December 2010. Analysis of 261 human fecal samples showed that sporadic human cryptosporidiosis is caused by four species; C. hominis, C. parvum, C. andersoni, and C. fayeri. Sequence analysis of the gp60 gene identified 5 subtype families and 31 subtypes. Cryptosporidium hominis IbA10G2 and C. parvum IIaA18G3R1 were the most frequent causes of human cryptosporidiosis in New South Wales, with 59% and 16% of infections, respectively, attributed to them. The results showed that infections were most prevalent in 0- to 4-year-olds. No gender bias or regional segregation was observed between the distribution of C. hominis and C. parvum infections. To determine the role of cattle in sporadic human infections in New South Wales, 205 cattle fecal samples were analyzed. Four Cryptosporidium species were identified, C. hominis, C. parvum, C. bovis, and C. ryanae. C. parvum subtype IIaA18G3R1 was the most common cause of cryptosporidiosis in cattle, with 47% of infections attributed to it. C. hominis subtype IbA10G2 was also identified in cattle isolates.  相似文献   

7.
Cryptosporidium parvum attaches to intestinal and biliary epithelial cells via specific molecules on host-cell surface membranes including Gal/GalNAc-associated glycoproteins. Subsequent cellular entry of this parasite depends on host-cell membrane alterations to form a parasitophorous vacuole via activation of phosphatidylinositol 3-kinase (PI-3K)/Cdc42-associated actin remodelling. How C. parvum hijacks these host-cell processes to facilitate its infection of target epithelia is unclear. Using specific probes to known components of sphingolipid-enriched membrane microdomains (SEMs), we detected aggregation of host-cell SEM components at infection sites during C. parvum infection of cultured human biliary epithelial cells (i.e. cholangiocytes). Activation and membrane translocation of acid-sphingomyelinase (ASM), an enzyme involved in SEM membrane aggregation, were also observed in infected cells. Pharmacological disruption of SEMs and knockdown of ASM via a specific small interfering RNA (siRNA) significantly decreased C. parvum attachment (by approximately 84%) and cellular invasion (by approximately 88%). Importantly, knockdown of ASM and disruption of SEMs significantly blocked C. parvum-induced accumulation of Gal/GalNAc-associated glycoproteins at infection sites by approximately 90%. Disruption of SEMs and knockdown of ASM also significantly blocked C. parvum-induced activation of host-cell PI-3K and subsequent accumulation of Cdc42 and actin by up to 75%. Our results suggest an important role of SEMs for C. parvum attachment to and entry of host cells, likely via clustering of membrane-binding molecules and facilitating of C. parvum-induced actin remodelling at infection sites through activation of the PI-3K/Cdc42 signalling pathway.  相似文献   

8.
9.
Several species of Cryptosporidium have been associated with infection. Cryptosporidium parvum and Cryptosporidium hominis are the main agents of cryptosporidiosis in humans. Stool samples from 108 Cryptosporidium-infected patients were submitted to PCR-RFLP analysis for a 553-bp fragment of Cryptosporidium oocyst wall protein (COWP) gene and an 826-864 bp fragment of the small-subunit ribosomal RNA (SSU-rRNA) gene. Ninety-two patients were immunocompetent children and 16 were HIV-infected adults. C. hominis was detected in 69 patients (59 immunocompetent and 10 HIV-infected); C. parvum, in 34 patients (28 immunocompetent and 6 HIV-infected); and C. meleagridis and C. felis in one patient each (both immunocompetent children). Three samples yielded negative results. C. parvum was significantly more frequent in children from rural areas than in those of urban residence (p=0.010). As far as we know, this is the first surveillance study about the molecular characterization of Cryptosporidium in humans performed in Spain. The finding of zoonotic species infecting humans calls for further research on this subject.  相似文献   

10.
The use of molecular diagnostic tools in epidemiological investigations of Cryptosporidium, Giardia, and Enterocytozoon has provided new insights into their diversity and transmission pathways. In this study, 157 stool specimens from 2-month to 70-year-old patients were collected, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis of the small subunit (SSU) rRNA gene was used to detect and differentiate Cryptosporidium species, and DNA sequence analysis of the 60 kDa glycoprotein (gp60) gene was used to subtype Cryptosporidium hominis and Cryptosporidium parvum. Giardia duodenalis, and Enterocytozoon bieneusi in the specimens were detected using PCR and sequence analysis of the triosephosphate isomerase (tpi) gene and internal transcribed spacer (ITS), respectively. C. hominis and C. parvum were found in two (1.3%) and one (0.6%) specimen respectively, comprising of Ia and IIe (with 8 nucleotide substitutions) subtype families. The G. duodenalis A2 subtype was detected in five (3.2%) specimens, while four genotypes of E. bieneusi, namely A, type IV, D and WL7 were found in 10 (6.4%) specimens. Children aged two years or younger had the highest occurrence of Cryptosporidium (4.4%) and Enterocytozoon (13.0%) while children of 6 to 17 years had the highest Giardia infection rate (40.0%). No Cryptosporidium, Giardia, and Enterocytozoon were detected in patients older than 60 years. Enterocytozoon had high infection rates in both HIV-positive (3.3%) and HIV-negative (8.3%) patients. Results of the study suggest that anthroponotic transmission may be important in the transmission of Cryptosporidium spp. and G. duodenalis while zoonotic transmissions may also play a role in the transmission of E. bieneusi in humans in Kaduna State, Nigeria.  相似文献   

11.
To determine a suitable condition for in vitro infection model of Cryptosporidium parvum, four different cell lines, AGS, MDCK, HCT-8 and Caco-2, were used as host cell lines which were cultured at various concentrations of added supplements. These supplement include fetal bovine serum (FBS), sodium choleate, ascorbic acid, folic acid, calcium pantothenate, para-aminobenzoic acid and pyruvate and their effects on the cell lines which were infected with C. parvum were evaluated. The results of this study showed that the AGS cell line was most susceptible to C. parvum whereas the Caco-2 cells appeared to be least susceptible to C. parvum. In regards to the serum condition, 10% FBS was suitable for the growth of AGS and HCT-8 cells, and 1% FBS was good for the growth of the MDCK cells when they were inoculated with C. parvum. Vitamins had a positive effect on the AGS cells, and pyruvate also showed positive effects on all of the cell lines except for Caco-2. Modified medium for each cell line was prepared by adding appropriate amounts of each supplement which resulted in the highest parasite infection number. Modified media increased the number of parasites infected on AGS cells to 2.3-fold higher when compared to the control media. In this study, we found that the AGS cell line was a suitable host model for evaluating C. parvum in vitro study and the media contents for the optimal infection conditions were suggested.  相似文献   

12.
Two species of Cryptosporidium are known to infect man; C. hominis which shows anthroponotic transmission between humans, and C. parvum which shows zoonotic transmission between animals or between animals and man. In this study, we focused on identifying genotypes of Cryptosporidium prevalent among inhabitants and domestic animals (cattle and goats), to elucidate transmittal routes in a known endemic area in Hwasun-gun, Jeollanam-do, Republic of Korea. The existence of Cryptosporidium oocysts was confirmed using a modified Ziehl-Neelsen stain. Human infections were found in 7 (25.9%) of 27 people examined. Cattle cryptosporidiosis cases constituted 7 (41.2%) of 17 examined, and goat cases 3 (42.9%) of 7 examined. Species characterizations were performed on the small subunit of the rRNA gene using both PCR-RFLP and sequence analysis. Most of the human isolates were mixtures of C. hominis and C. parvum genotypes and similar PCR-RFLP patterns were observed in cattle and goat isolates. However, sequence analyses identified only C. hominis in all isolates examined. The natural infection of cattle and goats with C. hominis is a new and unique finding in the present study. It is suggested that human cryptosporidiosis in the studied area is caused by mixtures of C. hominis and C. parvum oocysts originating from both inhabitants and domestic animals.  相似文献   

13.
The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts.  相似文献   

14.
A human-derived isolate of Cryptosporidium parvum from a symptomatic patient with the acquired immunodeficiency syndrome was expanded in vivo by infecting a neonatal calf with 10(8) oocysts. Sporozoites were isolated from 4 x 10(10) oocysts harvested from this single infection, and the characteristics of mixed hemagglutination (HA) with rabbit erythrocytes were determined. Sporozoite HA was inhibited by bovine submaxillary mucin (BSM), hog gastric mucin, and orosomucoid, but not by simple sugars, including sialic acid. Carbohydrate-inhibitable HA (lectin) activity increased with sporozoite lysis and was associated with the sporozoite membrane fractions. The ability of intact sporozoites to form rosettes around erythrocytes indicates that the HA (lectin) is, at least in part, present on the parasite surface. Hemagglutination (lectin) activity was partially purified from sporozoite lysates by affinity chromatography with BSM coupled to Sepharose-4B. Best elution was obtained with ethylene glycol and NaCl, which resulted in enrichment of 6 bands compared to the crude starting lysate (Mr = 60, 24, 22, 20, and 15 kDa and a 40-kDa doublet). Our results indicate that an HA (lectin) activity is present on the surface of intact sporozoites where it could play a role in cell-to-cell interactions with eukaryotic targets.  相似文献   

15.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

16.
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.  相似文献   

17.
18.
Sporozoites and merozoites are stages in the life cycle of Cryptosporidium parvum that can cyclically infect intestinal cells, causing persistent infection and severe diarrhea in immunodeficient patients. Infection by sporozoites can be neutralized by surface-reactive mAb. We show that merozoite infectivity can also be neutralized by surface-reactive mAb. To do this, viable C. parvum merozoites were isolated by differential and isopycnic. centrifugation, and distinguished from sporozoites by transmission electron microscopy. Differential reactivity with a panel of seven mAb was used to determine the amount of sporozoite contamination in isolated merozoite preparations. The isolated merozoites were distinguished from sporozoites (p less than 0.0001) by four sporozoite-specific mAb (16.332, 16.502, 17.25, and 18.357) in an indirect immunofluorescence assay. Three mAb (16.29, 17.41, and 18.44) consistently reacted with both merozoites and sporozoites. Isolated merozoites were infectious for neonatal mice when administered by intraintestinal injection. Infectivity for mice was significantly neutralized (p less than 0.05) when 1 to 2 x 10(5) merozoites were incubated with sporozoite-neutralizing mAb 17.41 or 18.44, before inoculation. Merozoites incubated with an isotype control mAb remained infectious for neonatal mice. We conclude that C. parvum merozoites share neutralization-sensitive epitopes with sporozoites.  相似文献   

19.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号