首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.  相似文献   

2.
Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg2+ ions. Unlike Mg2+ ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms.  相似文献   

3.
Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.  相似文献   

4.
Macrolides are clinically important antibiotics that inhibit protein biosynthesis on ribosomes by binding to ribosomal tunnel. Tylosin belongs to the group of 16-membered macrolides. It is a potent inhibitor of translation whose activity is largely due to reversible covalent binding of its aldehyde group with the base of A2062 in 23S ribosomal RNA. It is known that the conversion of the aldehyde group of tylosin to methyl or carbinol groups dramatically reduces its inhibitory activity. However, earlier we obtained several derivatives of tylosin having comparable activity in spite of the fact that the aldehyde group of tylosin in these compounds was substituted with an amino acid or a peptide residue. Details of the interaction of these compounds with the ribosome that underlies their high inhibitory activity were not known. In the present work, the structure of the complex of tylosin derivative containing in position 20 the residue of ethyl ester of 2-imino(oxy)acetylphenylalanine with the tunnel of the E. coli ribosome was identified by means of molecular dynamics simulations, which could explain high biological activity of this compound.  相似文献   

5.
Crystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center. Their location suggests that they inhibit protein synthesis by blocking the egress of nascent polypeptides. The saccharide branch attached to C5 of the lactone rings extends toward the peptidyl transferase center, and the isobutyrate extension of the carbomycin A disaccharide overlaps the A-site. Unexpectedly, a reversible covalent bond forms between the ethylaldehyde substituent at the C6 position of the 16-membered macrolides and the N6 of A2103 (A2062, E. coli). Mutations in 23S rRNA that result in clinical resistance render the binding site less complementary to macrolides.  相似文献   

6.
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.  相似文献   

7.
Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.  相似文献   

8.
Applying kinetics and footprinting analysis, we show that telithromycin, a ketolide antibiotic, binds to Escherichia coli ribosomes in a two-step process. During the first, rapidly equilibrated step, telithromycin binds to a low-affinity site (K(T) = 500 nM), in which the lactone ring is positioned at the upper portion of the peptide exit tunnel, while the alkyl-aryl side chain of the drug inserts a groove formed by nucleotides A789 and U790 of 23S rRNA. During the second step, telithromycin shifts slowly to a high-affinity site (K(T)* = 8.33 nM), in which the lactone ring remains essentially at the same position, while the side chain interacts with the base pair U2609:A752 and the extended loop of protein L22. Consistently, mutations perturbing either the base pair U2609:A752 or the L22-loop hinder shifting of telithromycin to the final position, without affecting the initial step of binding. In contrast, mutation Lys63Glu in protein L4 placed on the opposite side of the tunnel, exerts only a minor effect on telithromycin binding. Polyamines disfavor both sequential steps of binding. Our data correlate well with recent crystallographic data and rationalize the changes in the accessibility of ribosomes to telithromycin in response to ribosomal mutations and ionic changes.  相似文献   

9.
Ketolides represent a new generation of macrolide antibiotics. In order to identify the ketolide-binding site on the ribosome, a library of Escherichia coli clones, transformed with a plasmid carrying randomly mutagenized rRNA operon, was screened for mutants exhibiting resistance to the ketolide HMR3647. Sequencing of the plasmid isolated from one of the resistant clones and fragment exchange demonstrated that a single U754A mutation in hairpin 35 of domain II of the E. coli 23S rRNA was sufficient to confer resistance to low concentrations of the ketolide. The same mutation also conferred erythromycin resistance. Both the ketolide and erythromycin protected A2058 and A2059 in domain V of 23S rRNA from modification with dimethyl sulphate, whereas, in domain II, the ketolide protected, while erythromycin enhanced, modification of A752 in the loop of the hairpin 35. Thus, mutational and footprinting results strongly suggest that the hairpin 35 constitutes part of the macrolide binding site on the ribosome. Strong interaction of ketolides with the hairpin 35 in 23S rRNA may account for the high activity of ketolides against erythromycin-resistant strains containing rRNA methylated at A2058. The existence of macrolide resistance mutations in the central loop of domain V and in hairpin 35 in domain II together with antibiotic footprinting data suggest that these rRNA segments may be in close proximity in the ribosome and that hairpin 35 may be a constituent part of the ribosomal peptidyl transferase centre.  相似文献   

10.
Dinos GP  Kalpaxis DL 《Biochemistry》2000,39(38):11621-11628
The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and AcPhe-tRNA (donor substrate) bound at the P-site of poly(U)-programmed ribosomes. It is shown that tylosin inhibits puromycin reaction as a slow-binding, slowly reversible inhibitor. Detailed kinetic analysis reveals that tylosin (I) reacts rapidly with complex C, i.e., the AcPhe-tRNA. poly(U).70S ribosome complex, to form the encounter complex CI, which then undergoes a slow isomerization and is converted to a tight complex, CI, inactive toward puromycin. These events are described by the scheme C + I <==> (K(i)) CI <==> (k(4), k(5)) CI. The K(i), k(4), and k(5) values are equal to 3 microM, 1.5 min(-1), and 2.5 x 10(-3) min(-1), respectively. The extremely low value of k(5) implies that the inactivation of complex C by tylosin is almost irreversible. The irreversibility of the tylosin effect on peptide bond formation is significant for the interpretation of this antibiotic's therapeutic properties; it also renders the tylosin reaction a useful tool in the study of other macrolides failing to inhibit the puromycin reaction but competing with tylosin for common binding sites on the ribosome. Thus, the tylosin reaction, in conjunction with the puromycin reaction, was applied to investigate the erythromycin mode of action. It is shown that erythromycin (Er), like tylosin, interacts with complex C according to the kinetic scheme C + Er <==> (K(er)) CEr <==> (k(6), k(7)) C*Er and forms a tight complex, CEr, which remains active toward puromycin. The determination of K(er), k(6), and k(7) enables us to classify erythromycin as a slow-binding ligand of ribosomes.  相似文献   

11.
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNA(Pro) peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748-A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNA(Pro) against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.  相似文献   

12.
F Tejedor  J P Ballesta 《Biochemistry》1986,25(23):7725-7731
Radioactive carbomycin A, niddamycin, tylosin, and spiramycin, but not erythromycin, can be covalently bound to Escherichia coli ribosomes by incubation at 37 degrees C. The incorporation of radioactivity into the particles is inhibited by SH- and activated double bond containing compounds but not by amino groups, suggesting that the reactions may take place by addition to the double bond present in the reactive antibiotics. This thermic reaction must be different from the photoreaction described for some of these macrolides [Tejedor, F., & Ballesta, J. P. G. (1985) Biochemistry 24, 467-472] since tylosin, which is not photoincorporated, is thermically bound to ribosomes. Most of the radioactivity is incorporated into the ribosomal proteins. Two-dimensional gel electrophoresis of proteins labeled by carbomycin A, niddamycin, and tylosin indicates that about 40% of the radioactivity is bound to protein L27; the rest is distributed among several other proteins such as L8, L2, and S12, to differing extents depending on the drug used. These results indicate, in accordance with previous data, that protein L27 plays an important role in the macrolide binding site, confirming that these drugs bind near the peptidyl transferase center of the ribosome.  相似文献   

13.
The methyltransferase RlmA(II) (TlrB) confers resistance to the macrolide antibiotic tylosin in the drug-producing strain Streptomyces fradiae. The resistance conferred by RlmA(II) is highly specific for tylosin, and no resistance is conferred to other macrolide drugs, or to lincosamide and streptogramin B (MLS(B)) drugs that bind to the same region on the bacterial ribosome. In this study, the methylation site of RlmA(II) is identified unambiguously by liquid chromatography/electrospray ionization mass spectrometry as the N-1 position of 23S rRNA nucleotide G748. This position is contacted by the mycinose sugar moiety of tylosin, which is absent from the other drugs. The selective resistance to tylosin conferred by m(1)G748 illustrates how differences in drug structure facilitate the drug fit at the MLS(B)-binding site. This observation is of relevance for the rational design of novel antimicrobials targeting the MLS(B) site, especially if the antimicrobials are to be used against pathogens possessing m(1)G748.  相似文献   

14.
Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.  相似文献   

15.
We have used oligodeoxyribonucleotide probes to investigate possible interactions between chloramphenicol and portions of the rRNA contained within the peptidyltransferase center of the Escherichia coli ribosome. Oligodeoxyribonucleotide probes complementary to bases 2448-2454, 2468-2482, and 2497-2505 of 23 S rRNA were hybridized to 50 S subunits in situ. Probe binding was qualitatively assessed by sucrose gradient centrifugation. Each probe was shown to bind specifically with its intended binding site through digestion of the rRNA within the RNA/DNA hetero-duplexes with RNase H and analysis of the digestion fragments using gel electrophoresis. Competitive binding experiments were conducted between each probe and the antibiotics chloramphenicol and erythromycin. The binding of a probe complementary to bases 2497-2505 was attenuated by 70% upon the binding of chloramphenicol. A probe complementary to bases 2468-2482 showed an increase in binding of 14% while binding of a probe complementary to bases 2448-2454 was not affected by chloramphenicol binding. Erythromycin did not affect the binding of any of these probes to 50 S subunits. These results suggest that bases within the 2497-2505 region of 23 S rRNA in E. coli may be involved in a chloramphenicol/rRNA interaction.  相似文献   

16.
The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m5U747 and C2611/C2612, in domains II and V, respectively, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome.  相似文献   

17.
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.  相似文献   

18.
We characterized the effects of classical erythromycin resistance mutations in ribosomal proteins L4 and L22 of the large ribosomal subunit on the kinetics of erythromycin binding. Our data are consistent with a mechanism in which the macrolide erythromycin enters and exits the ribosome through the nascent peptide exit tunnel, and suggest that these mutations both impair passive transport through the tunnel and distort the erythromycin‐binding site. The growth‐inhibitory action of erythromycin was characterized for bacterial populations with wild‐type and L22‐mutated ribosomes in drug efflux pump deficient and proficient backgrounds. The L22 mutation conferred reduced erythromycin susceptibility in the drug efflux pump proficient, but not deficient, background. This ‘masking’ of drug resistance by pump deficiency was reproduced by modelling with input data from our biochemical experiments. We discuss the general principles behind the phenomenon of drug resistance ‘masking’, and highlight its potential importance for slowing down the evolution of drug resistance among pathogens.  相似文献   

19.
20.
Inducible expression of the erm erythromycin resistance genes relies on drug-dependent ribosome stalling. The molecular mechanisms underlying stalling are unknown. We used a cell-free translation system to elucidate the contribution of the nascent peptide, the drug, and the ribosome toward formation of the stalled complex during translation of the ermC leader cistron. Toe-printing mapping, selective amino acid labeling, and mutational analyses revealed the peptidyl transferase center (PTC) as the focal point of the stalling mechanism. In the ribosome exit tunnel, the C-terminal sequence of the nascent peptide, critical for stalling, is in the immediate vicinity of the universally conserved A2062 of 23S rRNA. Mutations of this nucleotide eliminate stalling. Because A2062 is located in the tunnel, it may trigger a conformational change in the PTC, responding to the presence of a specific nascent peptide. The cladinose-containing macrolide antibiotic in the tunnel positions the nascent peptide for interaction with the tunnel sensory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号