首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we sought cellular mRNAs whose expression was diminished in resting CD4(+) T cells of HIV-1-infected patients exposed to VPA. c-Myc was prominent among genes markedly downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in chronically infected cell lines. Chromatin immunoprecipitation (ChIP) assays revealed that c-Myc and HDAC1 are coordinately resident at the HIV-1 long terminal repeat (LTR) promoter and absent from the promoter after VPA treatment in concert with histone acetylation, RNA polymerase II recruitment, and LTR expression. Sequential ChIP assays demonstrated that c-Myc, Sp1, and HDAC1 coexist in the same DNA-protein complex at the HIV promoter. Short hairpin RNA inhibition of c-Myc reduces both c-Myc and HDAC1 occupancy, blocks c-Myc repression of Tat activation, and increases LTR expression. These results expand the understanding of mechanisms that recruit HDAC and maintain the latency of HIV-1, suggesting novel therapeutic approaches against latent proviral HIV infection.  相似文献   

2.
3.
Latent HIV reservoirs are the primary hurdle to eradication of infection. Identification of agents, pathways and molecular mechanisms that activate latent provirus may, in the presence of highly active antiretroviral therapy, permit clearance of infected cells by the immune system. Promoter-proximal pausing of RNA polymerase (Pol) II is a major rate-limiting step in HIV gene expression. The viral Tat protein recruits human Super Elongation Complex (SEC) to paused Pol II to overcome this limitation. Here, we identify the bromodomain protein Brd4 and its inhibition of Tat-transactivation as a major impediment to latency reactivation. Brd4 competitively blocks the Tat–SEC interaction on HIV promoter. The BET bromodomain inhibitor JQ1 dissociates Brd4 from the HIV promoter to allow Tat recruitment of SEC to stimulate HIV elongation. JQ1 synergizes with another latency activator prostratin, which promotes Pol II loading onto the viral promoter. Because JQ1 activates viral latency without inducing global T cell activation, this and other closely related compounds and their antagonization of Brd4 to promote Tat–SEC interaction merit further investigations as effective agents/strategies for eliminating latent HIV.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
HIV-1 latency represents a major problem in the eradication of HIV-1 in infected individuals treated with highly active anti-retroviral therapy. Histone deacetylase (HDAC) inhibits HIV-1 gene expression and virus production and may contribute to quiescence of HIV-1 within resting CD4+ T cells. Here, we evaluated the effect of Oxamflatin, a class I HDAC inhibitor, on the epigenetic change at HIV-1 long terminal repeat (LTR) and the induction of the latent viruses in the latency Jurkat T cell line. Flow cytometry assay showed that Oxamflatin activate HIV-1 gene expression in these latently infected cells by 2-17 fold than background levels. Chromatin immunoprecipitation (ChIP) assays further revealed that Oxamflatin increase the acetylation level of histone H3 and histone H4 at the nucleosome 1(nuc-1) site of the HIV-1 LTR compared to mock treatment. We also found that Oxamflatin had a synergization with prostratin, or 5-azacytidine or tumor necrosis factor-α to activate the HIV-1 promoter. Taken together, our results suggest that the histone acetylation plays an important role in regulating HIV-1 LTR gene expression, and Oxamflatin has potential as drug candidates as antilatency therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号