首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rough-type lipopolysaccharide (LPS) of the plague pathogen, Yersinia pestis, was studied after mild-acid and strong-alkaline degradations by chemical analyses, NMR spectroscopy and electrospray-ionization mass spectrometry, and the following structure of the core region was determined:where L-alpha-D-Hep stands for L-glycero-alpha-D-manno-heptose, Sug1 for either 3-deoxy-alpha-D-manno-oct-2-ulosonic acid (alpha-Kdo) or D-glycero-alpha-D-talo-oct-2-ulosonic acid (alpha-Ko), and Sug2 for either beta-D-galactose or D-glycero-alpha-D-manno-heptose. A minority of the LPS molecules lacks GlcNAc.  相似文献   

2.
Lipopolysaccharides (LPS) of Vibrio parahaemolyticus O2 and O-untypable (OUT) strain (KX-V212) isolated from an individual patient were shown to contain 5,7-diamino-3,5,7,9-tetradeoxy-non-2-ulosonic acid (NonlA), which was readily released from LPS by mild acid hydrolysis. In the present study, we investigated the chemical and serological properties of NonlA isolated from LPS of V. parahaemolyticus O2 and OUT KX-V212. GC-MS and NMR analysis identified the NonlA from LPS of O2 to be 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (5NAc7NAcNonlA) and that from LPS of KX-V212 to be 5-acetamido-7-(N-acetyl-D-alanyl)amido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (5NAc7NAlaNAcNonlA). In ELISA inhibition analysis, 5NAc7NAcNonlA inhibited the O2 LPS/anti-O2 antiserum system, whereas, 5NAc7NAlaNAcNonlA did not show any inhibitory activity. However, after N-deacylation of 5NAc7NAlaNAcNonlA followed by N-acetylation, the product (5NAc7NAcNonlA) inhibited the O2 LPS/anti-O2 antiserum system to the same extent as that of 5NAc7NAcNonlA obtained from O2 LPS. These results suggest that 5NAc7NAcNonlA might be related to the serological specificity of O2 LPS as one of main epitope(s) involved in O2 LPS.  相似文献   

3.
A structural investigation has been carried out on the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides (LPS) isolated by dephosphorylation, O-deacylation and N-deacylation. The carbohydrate backbone is a short-chain saccharide consisting of nine monosaccharide units i.e., 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA), L-glycero-D-manno-heptose (L,D-Hep), D-glycero-D-manno-heptose (D,D-Hep), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), and 2 mol of 2-amino-2-deoxy-D-glucose (D-glucosamine, GlcN). Based on the data obtained by NMR spectroscopy, fast-atom bombardment mass spectrometry (FABMS) and methylation analysis, a structure was elucidated for the carbohydrate backbone of O2 LPS. In the native O2 LPS, the 2-amino-2-deoxy-D-glucitol (GlcN-ol) at the reducing end of the nonasaccharide is present as GlcN. The lipid A backbone is a beta-D-GlcN-(1-->6)-D-GlcN disaccharide as is the case for many Gram-negative bacterial LPS. The lipid A proximal Kdo is substituted by the distal part of the carbohydrate chain at position-5. In the native O2 LPS, D-galacturonic acid, which is liberated from LPS by mild acid treatment or by dephosphorylation in hydrofluoric acid, is present although its binding position is unknown at present.  相似文献   

4.
The structure of the carbohydrate backbone of the lipid A-core region of the LPS from Shewanella algae strain BrY was analysed. The LPS was N,O-deacylated to give three products, which were isolated and studied by chemical methods, NMR and mass spectrometry: [Carbohydrate structures: see text]. All monosaccharides except L-rhamnose had the D-configuration. This LPS presents a second example (after S. oneidensis) of the structure with a novel linking unit between the core and lipid A moieties, 8-amino-3,8-dideoxy-D-manno-oct-2-ulosonic acid (8-amino-Kdo).  相似文献   

5.
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.  相似文献   

6.
Vibrio parahaemolyticus strain KX-V212 of a novel serotype, which does not belong to any of the known 13 O-serotypes of this vibrio, was isolated from a patient. Its O-antigen harbors a unique strain-specific O-antigenic factor(s), in addition to that shared by the O-antigen of V. parahaemolyticus serotype O2. A carbohydrate backbone nonasaccharide was isolated from the lipopolysaccharide (LPS) of strain KX-V212 by dephosphorylation, reduction and deacylation and found to consist of one residue each of D-glucose, D-galactose, D-GlcN, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and 5-acetamido-7-(N-acetyl-D-alanyl)amino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (Non5Ac7Ala), and two residues each of D-GlcA and L-glycero-D-manno-heptose (LD-Hep). Analysis of the isolated and deacylated lipid A showed that this oligosaccharide was an artifact resulting from a loss of one GlcN residue from the lipid A backbone. Therefore, the carbohydrate backbone of the LPS is a decasaccharide having the structure shown below. The initial LPS contains also D-GalA and phosphoethanolamine at unknown positions. Both similarity and differences are observed between the LPS of V. parahaemolyticus serotype O2 and strain KX-V212. [carbohydrate structure: see text]  相似文献   

7.
The O-polysaccharide chain of the lipopolysaccharide (LPS) of Providencia stuartii O20 was found to contain d-glucuronic acid, N-acetyl-d-glucosamine, and a rarely occurring higher sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid (di-N-acetyl-8-epilegionaminic acid, 8eLeg5Ac7Ac). Degradation of the LPS with dilute acetic acid caused depolymerization of the polysaccharide chain by the ketosidic linkage to give a tetrasaccharide corresponding to the repeating unit of the polysaccharide. Based on sugar and methylation analyses of the tetrasaccharide and O-deacylated LPS as well as ESIMS, (1)H and (13)C NMR spectroscopy data, the structure of the O-polysaccharide of P. stuartii O20 was established.  相似文献   

8.
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.  相似文献   

9.
The lipopolysaccharide (LPS) of the deep rough mutant Haemophilus influenzae I69 consists of lipid A and a single 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue substituted with one phosphate at position 4 or 5 (Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T., and Z?hringer, U. (1988) Eur. J. Biochem. 177, 483-492). The waaA gene encoding the essential LPS-specific Kdo transferase was cloned from this strain, and its nucleotide sequence was identical to H. influenzae DSM11121. The gene was expressed in the Gram-positive host Corynebacterium glutamicum and characterized in vitro to encode a monofunctional Kdo transferase. waaA of H. influenzae could not complement a knockout mutation in the corresponding gene of an Re-type Escherichia coli strain. However, complementation was possible by coexpressing the recombinant waaA together with the LPS-specific Kdo kinase gene (kdkA) of H. influenzae DSM11121 or I69, respectively. The sequences of both kdkA genes were determined and differed in 25 nucleotides, giving rise to six amino acid exchanges between the deduced proteins. Both E. coli strains which expressed waaA and kdkA from H. influenzae synthesized an LPS containing a single Kdo residue that was exclusively phosphorylated at position 4. The structure was determined by nuclear magnetic resonance spectroscopy of deacylated LPS. Therefore, the reaction products of both cloned Kdo kinases represent only one of the two chemical structures synthesized by H. influenzae I69.  相似文献   

10.
Lipopolysaccharide (LPS) of Pseudomonas aeruginosa rough mutant H4 was isolated by hot water/phenol extraction followed by a modified phenol/chloroform/petroleum ether procedure. Upon SDS/PAGE, the LPS showed a strong major band corresponding to the expected rough-type LPS. Additional faint high molecular-mass bands revealed that the O-chain was present, indicating that the H4 mutant is genetically unstable. Mild acid hydrolysis of the LPS removed lipid A and released a phosphorylated core oligosaccharide that was purified by gel-permeation chromatography and high-performance anion-exchange liquid chromatography. The oligosaccharide contained two residues of L-glycero-D-manno-heptose (Hep) and one residue each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and GalNAc. Upon matrix-assisted laser desorption/ionization mass spectroscopy in the negative ion mode, the main fraction expressed a peak for the molecular ion [M-H]- at m/z 1106.41, which was compatible with a carbamoylated, trisphosphorylated tetrasaccharide. The structure was further investigated using one- and two-dimensional homonuclear and heteronuclear correlated NMR spectroscopy at pD 3 and, after borohydride reduction, at pD 9. The NMR data of the two phosphorylated tetrasaccharides recorded at different pD allowed determination of the positions of the three phosphate (P) groups and the carbamoyl group (Cm) thus establishing the following structure of the core oligosaccharide: [equation: see text] Two unusual structural features in the core oligosaccharide of P. aeruginosa were identified for the first time, i.e. the replacement of an amide-linked alanyl group in GalN with an acetyl group and the phosphorylation at position 6 of HepII.  相似文献   

11.
Following a report of variations in the lipopolysaccharide (LPS) structure of Yersinia pestis at mammalian (37 degrees C) and flea (25 degrees C) temperatures, a number of changes to the LPS structure were observed when the bacterium was cultivated at a temperature of winter-hibernating rodents (6 degrees C). In addition to one of the known Y. pestis LPS types, LPS of a new type was isolated from Y. pestis KM218 grown at 6 degrees C. The core of the latter differs in: (i) replacement of terminal galactose with terminal d-glycero-d-manno-heptose; (ii) phosphorylation of terminal oct-2-ulosonic acid with phosphoethanolamine; (iii) a lower content of GlcNAc, and; (iv) the absence of glycine; lipid A differs in the lack of any 4-amino-4-deoxyarabinose and presumably partial (di)oxygenation of a fatty acid(s). The data obtained suggest that cold temperature switches on an alternative mechanism of control of the synthesis of Y. pestis LPS.  相似文献   

12.
Burkholderia cepacia is a bacterium with increasing importance as a pathogen in patients with cystic fibrosis. The deep-rough mutant Ko2b was generated from B. cepacia type strain ATCC 25416 by insertion of a kanamycin resistance cassette into the gene waaC encoding heptosyltransferase I. Mass spectrometric analysis of the de-O-acylated lipopolysaccharide (LPS) of the mutant showed that it consisted of a bisphosphorylated glucosamine backbone with two 3-hydroxyhexadecanoic acids in amide-linkage, 4-amino-4-deoxyarabinose (Ara4N) residues on both phosphates, and a core oligosaccharide of the sequence Ara4N-(1 --> 8) D-glycero-D-talo-oct-2-ulosonic acid (Ko)-(2 --> 4)3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). The mutant allowed investigations on the biosynthesis of the LPS as well as on its role in human infection. Mutant Ko2b showed no difference in its ability to invade human macrophages as compared with the wild type. Furthermore, isolated LPS of both strains induced the production of tumor necrosis factor alpha from macrophages to the same extent. Thus, the truncation of the LPS did not decrease the biological activity of the mutant or its LPS in these aspects.  相似文献   

13.
Agrobacterium larrymoorei is a Gram-negative phytopathogenic bacterium, which produces tumours on Ficus benjamina plants and differs from other Agrobacteria both genetically and biochemically. The lipopolysaccharide (LPS) plays an important role in the pathogenesis of Agrobacteria. The present paper is the first report on the molecular primary structure of the core region of an Agrobacterium LPS. The following structure of the core and lipid A carbohydrate backbone of an R-form LPS of A. larrymoorei was determined by chemical degradations and 1D and 2D NMR spectroscopy: [carbohydrate structure: see text] All sugars are alpha-D-pyranoses if not stated otherwise, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, Qui3NAcyl is 3,6-dideoxy-3-(3-hydroxy-2,3-dimethyl-5-oxoprolylamino)glucose, GlcAN and GalAN are amides of GlcA and GalA.  相似文献   

14.
From the lipopolysaccharide (LPS) fraction of the plant-pathogenic bacterium Burkholderia caryophylli, the linkage between O-specific caryan and core region was characterised. The LPS fraction was first treated with 48% aqueous HF at 4 degrees C and successively with 1% acetic acid at 100 degrees C. A main oligosaccharide representing the carbohydrate backbone of the core region and a portion of the caryan (three unit of caryose) was isolated by high-performance anion-exchange chromatography. Compositional and methylation analyses, matrix-assisted laser desorption/ionisation mass spectrometry and 2D NMR spectroscopy identified the structure: [carbohydrate structure: see text]. The above residues are alpha-linked pyranose rings, if not stated otherwise. Hep is L-glycero-D-manno-heptose, Car is 4,8-cyclo-3,9-dideoxy-L-erythro-D-ido-nonose and Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid. This finding indicates that QuiNAc residue is the primer monosaccharide, which connects the core oligosaccharide to caryan O-chain.  相似文献   

15.
The lipopolysaccharide (LPS) of strain 8081-c-R2, a spontaneous R-mutant of Yersinia enterocolitica serotype O:8, was isolated using extraction with phenol/chloroform/light petroleum. Its compositional analysis indicated the presence of D-GlcN, D-Glc, L-glycero-D-manno- and D-glycero-D-manno-heptose, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and phosphate. From deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide, three oligosaccharides (1-3) were isolated using high-performance anion-exchange chromatography, the structures of which were determined by compositional analysis and one- and two-dimensional NMR spectroscopy as [carbohydrate structure see text] in which all sugars are pyranoses, and R and R' represent beta-D-Glc (in 1 and 2) and beta-D-GlcN (in 1 only), respectively. D-alpha-D-Hep is D-glycero-alpha-D-manno-heptose, L-alpha-D-Hep is L-glycero-alpha-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, and P is phosphate. The liberated lipid A was analyzed by compositional analyses and MALDI-TOF MS. Its beta-D-GlcN4P-(1-->6)-alpha-D-GlcN-1-->P backbone is mainly tetra-acylated with two amide- and one ester-linked (at O3 of the reducing GlcN) (R)-3-hydroxytetradecanoic acid residues, and one tetradecanoic acid that is attached to the 3-OH group of the amide-linked (R)-3-hydroxytetradecanoic acid of the nonreducing GlcN. Additionally, small amounts of tri- and hexa-acylated lipid A species occur.  相似文献   

16.
The similar three-dimensional structures of barley (1-->3)-beta-glucan endohydrolases and (1-->3,1-->4)-beta-glucan endohydrolases indicate that the enzymes are closely related in evolutionary terms. However, the (1-->3)-beta-glucanases hydrolyze polysaccharides of the type found in fungal cell walls and are members of the pathogenesis-related PR2 group of proteins, while the (1-->3,1-->4)-beta-glucanases function in plant cell wall metabolism. The (1-->3)-beta-glucanases have evolved to be significantly more stable than the (1-->3,1-->4)-beta-glucanases, probably as a consequence of the hostile environments imposed upon the plant by invading microorganisms. In attempts to define the molecular basis for the differences in stability, eight amino acid substitutions were introduced into a barley (1-->3,1-->4)-beta-glucanase using site-directed mutagenesis of a cDNA that encodes the enzyme. The amino acid substitutions chosen were based on structural comparisons of the barley (1-->3)- and (1-->3,1-->4)-beta-glucanases and of other higher plant (1-->3)-beta-glucanases. Three of the resulting mutant enzymes showed increased thermostability compared with the wild-type (1-->3,1-->4)-beta-glucanase. The largest increase in stability was observed when the histidine at position 300 was changed to a proline (mutant H300P), a mutation that was likely to decrease the entropy of the unfolded state of the enzyme. Furthermore, the three amino acid substitutions which increased the thermostability of barley (1-->3,1-->4)-beta-glucanase isoenzyme EII were all located in the COOH-terminal loop of the enzyme. Thus, this loop represents a particularly unstable region of the enzyme and could be involved in the initiation of unfolding of the (1-->3,1-->4)-beta-glucanase at elevated temperatures.  相似文献   

17.
18.
The syntheses of three trisaccharides: alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 4)-beta-D-GlcNAc --> OMe, alpha-Neu5Ac-(2 --> 3)-beta-D-Gal6SO3Na-(1 --> 4)-beta-D-GlcNAc --> OMe, and alpha-Neu5Ac-(2 --> 3)-beta-D-Gal-(1 --> 3)-alpha-D-GalNAc --> OBn were accomplished by using either methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-glycero-D-g alacto-2-nonulopyranoside)onate or methyl (phenyl N-acetyl-5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-beta-D-gl ycero-D-galacto-2-nonulopyranoside)onate as the sialyl donor. The N,N-diacetylamino sialyl donor appears to be more reactive than its parent acetamido sugar when allowed to react with an disaccharide acceptor under the same glycosylation conditions. The trisaccharides, as well as the intermediate products, were fully characterized by 2D DQF 1H-1H COSY and 2D ROESY spectroscopy.  相似文献   

19.
The syntheses of methyl alpha-D-glucopyranosyl-(1-->4)-alpha-D-galactopyranoside (1) and methyl alpha-D-xylo-hex-4-ulopyranosyl-(1-->4)-alpha-D-galactopyranoside (4) are reported. The keto-disaccharide 4 is of interest in our design, synthesis, and study of pectate lyase inhibitors. The key step in the syntheses was the high-yielding, stereospecific formation of methyl 4,6-O-benzylidene-2',3'-di-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (15), which was accomplished by reacting 2,3-di-O-benzyl-4,6-O-benzylidene-D-glucopyranosyl trichloroacetimidate (10) with methyl 2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (14) in the presence of a catalytic amount of tert-butyldimethylsilyl trifluoromethane sulfonate (TMSOTF). Compound 15 was either hydrogenolyzed to yield disaccharide 1 or treated with NaBH3CN-HCl in 1:1 tetrahydrofuran-ether to yield methyl 2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-galactopyranoside (2). The free 4'-OH of compound 2 was oxidized to a carbonyl group by a Swern oxidation, and the protecting groups were removed by hydrogenolysis to yield keto-disaccharide 4. These synthetic pathways were simple, yet high yielding.  相似文献   

20.
The lipopolysaccharide (LPS) of Chlamydia trachomatis serotype E was isolated from tissue culture-grown elementary bodies and analyzed structurally by mass spectrometry and 1H, 13C and 31P nuclear magnetic resonance. The LPS is composed of the same pentasaccharide bisphosphate alphaKdo-(2-8)-alphaKdo-(2-4)-alphaKdo-(2-6)-betaGlcN-4P-(1-6)-alphaGlcN-1P (Kdo is 3-deoxy-alpha-d-manno-oct-2-ulosonic acid) as reported for C. trachomatis serotype L2[Rund, S., Lindner, B., Brade, H. and Holst, O. (1999) J. Biol. Chem. 274, 16819-16824]. The glucosamine disaccharide backbone is substituted with a complex mixture of fatty acids with ester or amide linkage whereby no ester-linked hydroxy fatty acids were found. The LPS was purified carefully (with contaminations by protein or nucleic acids below 0.3%) and tested for its ability to induce proinflammatory cytokines in several readout systems in comparison to LPS from C. trachomatis serotype L2 and Chlamydophila psittaci strain 6BC as well as enterobacterial smooth and rough LPS and synthetic hexaacyl lipid A. The chlamydial LPS were at least 10 times less active than typical endotoxins; specificity of the activities was confirmed by inhibition with the LPS antagonist, B1233, or with monoclonal antibodies against chlamydial LPS. Like other LPS, the chlamydial LPS used toll-like receptor TLR4 for signalling, but unlike other LPS activation was strictly CD14-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号