共查询到20条相似文献,搜索用时 0 毫秒
1.
Hormonal regulation of hepatic glycogen synthase phosphatase 总被引:1,自引:0,他引:1
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a. 相似文献
2.
3.
Miriam S. Giambelluca Nathalie Cloutier Emmanuelle Rollet-Labelle Eric Boilard Marc Pouliot 《The international journal of biochemistry & cell biology》2013,45(11):2660-2665
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase involved in the regulation of cellular processes ranging from glycogen metabolism to cell cycle regulation. Its two known isoforms, α and β, are differentially expressed in tissues throughout the body and exert distinct but often overlapping functions. GSK-3 is typically active in resting cells, inhibition by phosphorylation of Ser21 (GSK-3α) or Ser9 (GSK-3β) being the most common regulatory mechanism. GSK-3 activity has been linked recently with immune system function, yet little is known about the role of this enzyme in neutrophils, the most abundant leukocyte type. In the present study, we examined GSK-3 expression and regulation in human neutrophils. GSK-3α was found to be the predominant isoform, it was constitutively expressed and cell stimulation with different agonists did not alter its expression. Stimulation by fMLP, LPS, GM-CSF, Fcγ receptor engagement, or adenosine A2A receptor engagement all resulted in phosphorylation of Ser21. The use of metabolic inhibitors revealed that combinations of Src kinase, PKC, PI3K/AKT, ERK/RSK and PKA signaling pathways could mediate phosphorylation, depending on the agonist. Neither PLC nor p38 were involved. We conclude that GSK-3α is the main isoform expressed in neutrophils and that many different pathways can converge to inhibit GSK-3α activity via Ser21-phosphorylation. GSK-3α thus might be a hub of cellular regulation. 相似文献
4.
The relative roles of insulin and glucose in the regulation of hepatic glycogen synthase and phosphorylase were studied in hepatocytes from fed rats. Elevation of extra-cellular glucose led to a rapid decrease in phosphorylase a activity followed by a slower increase in glycogen synthase I activity. A reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose was observed; following initial glucose-induced inactivation of phosphorylase, there was a highly significant linear inverse relationship between residual phosphorylase activity and glycogen synthase activation. Insulin led to a further decrease in phosphorylase activity and a 30-50% additional increase in glycogen synthase activity over that caused by glucose. The effects of insulin required the presence of glucose and served to augment acute glucose stimulation of glycogen synthase and inhibition of phosphorylase. Insulin did not perturb the reciprocal and coordinate relationship between phosphorylase inactivation and synthase activation in response to glucose. The results suggest that the ability of insulin to activate hepatic glycogen synthase can be entirely accounted for by its ability to inactivate phosphorylase. 相似文献
5.
Glycogen synthase kinase 3beta (GSK3beta) is a key component in many biological processes including insulin and Wnt signaling. Since the activation of each signaling pathway results in a decrease in GSK3beta activity, we examined the specificity of their downstream effects in the same cell type. Insulin induces an increased activity of glycogen synthase but has no influence on the protein level of beta-catenin. In contrast, Wnt increases the cytosolic pool of beta-catenin but not glycogen synthase activity. We found that, unlike insulin, neither the phosphorylation status of the serine9 residue of GSK3beta nor the activity of protein kinase B is regulated by Wnt. Although the decrease in GSK3beta activity is required, GSK3beta may not be the limiting component for Wnt signaling in the cells that we examined. Our results suggest that the axin-conductin complexed GSK3beta may be dedicated to Wnt rather than insulin signaling. Insulin and Wnt pathways regulate GSK3beta through different mechanisms, and therefore lead to distinct downstream events. 相似文献
6.
The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. 总被引:3,自引:0,他引:3
S A Summers A W Kao A D Kohn G S Backus R A Roth J E Pessin M J Birnbaum 《The Journal of biological chemistry》1999,274(25):17934-17940
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport. 相似文献
7.
Inhibitory effect of polycations on phosphorylation of glycogen synthase by glycogen synthase kinase 3 总被引:2,自引:0,他引:2
M G Hegazy K K Schlender S E Wilson E M Reimann 《Biochimica et biophysica acta》1989,1011(2-3):198-204
Several polycations were tested for their abilities to inhibit the activity of glycogen synthase kinase 3 (GSK-3). L-Polylysine was the most powerful inhibitor of GSK-3 with half-maximal inhibition of glycogen synthase phosphorylation occurring at approx. 100 nM. D-Polylysine and histone H1 were also inhibitory, but the concentration dependence was complex, and DL-polylysine was the least effective inhibitor. Spermine caused about 50% inhibition of GSK-3 at 0.7 mM and 70% inhibition at 4 mM. Inhibition of GSK-3 by L-polylysine could be blocked or reversed by heparin. A heat-stable polycation antagonist isolated from swine kidney cortex also blocked the inhibitory effect of L-polylysine on GSK-3 and blocked histone H1 stimulation of protein phosphatase 2A activity. Under the conditions tested, L-polylysine also inhibited GSK-3 catalyzed phosphorylation of type II regulatory subunit of cAMP-dependent protein kinase and a 63 kDa brain protein, but only slightly inhibited phosphorylation of inhibitor 2 or proteolytic fragments of glycogen synthase that contain site 3 (a + b + c). L-Polylysine at a concentration (200 nM) that caused nearly complete inhibition of GSK-3 stimulated casein kinase I and casein kinase II, but had virtually no effect on the catalytic subunit of cAMP-dependent protein kinase. These results suggest that polycations can be useful in controlling GSK-3 activity. Polycations have the potential to decrease the phosphorylation state of glycogen synthase at site 3, both by inhibiting GKS-3 as shown in this study and by stimulating the phosphatase reaction as shown previously (Pelech, S. and Cohen, P. (1985) Eur. J. Biochem. 148, 245-251). 相似文献
8.
9.
10.
Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3
下载免费PDF全文

Hergovich A Lisztwan J Thoma CR Wirbelauer C Barry RE Krek W 《Molecular and cellular biology》2006,26(15):5784-5796
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the development of tumors of the eyes, kidneys, and central nervous system. VHL encodes two gene products, pVHL30 and pVHL19, of which one, pVHL30, associates functionally with microtubules (MTs) to regulate their stability. Here we report that pVHL30 is a novel substrate of glycogen synthase kinase 3 (GSK3) in vitro and in vivo. Phosphorylation of pVHL on serine 68 (S68) by GSK3 requires a priming phosphorylation event at serine 72 (S72) mediated in vitro by casein kinase I. Functional analysis of pVHL species carrying nonphosphorylatable or phosphomimicking mutations at S68 and/or S72 reveals a central role for these phosphorylation events in the regulation of pVHL's MT stabilization (but not binding) activity. Taken together, our results identify pVHL as a novel priming-dependent substrate of GSK3 and suggest a dual-kinase mechanism in the control of pVHL's MT stabilization function. Since GSK3 is a component of multiple signaling pathways that are altered in human cancer, our results further imply that normal operation of the GSK3-pVHL axis may be a critical aspect of pVHL's tumor suppressor mechanism through the regulation of MT dynamics. 相似文献
11.
12.
Esau C Davis S Murray SF Yu XX Pandey SK Pear M Watts L Booten SL Graham M McKay R Subramaniam A Propp S Lollo BA Freier S Bennett CF Bhanot S Monia BP 《Cell metabolism》2006,3(2):87-98
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease. 相似文献
13.
14.
15.
16.
17.
Ke Yang Yang Guo William C Stacey Jyoti Harwalkar Jonathan Fretthold Masahiro Hitomi Dennis W Stacey 《BMC cell biology》2006,7(1):33-20
Background
The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. 相似文献18.
Mice fed a high-fat, low-carbohydrate ketogenic diet (KD) exhibit marked changes in hepatic metabolism and energy homeostasis. Here, we identify liver-derived fibroblast growth factor 21 (FGF21) as an endocrine regulator of the ketotic state. Hepatic expression and circulating levels of FGF21 are induced by both KD and fasting, are rapidly suppressed by refeeding, and are in large part downstream of PPARα. Importantly, adenoviral knockdown of hepatic FGF21 in KD-fed mice causes fatty liver, lipemia, and reduced serum ketones, due at least in part to altered expression of key genes governing lipid and ketone metabolism. Hence, induction of FGF21 in liver is required for the normal activation of hepatic lipid oxidation, triglyceride clearance, and ketogenesis induced by KD. These findings identify hepatic FGF21 as a critical regulator of lipid homeostasis and identify a physiological role for this hepatic hormone. 相似文献
19.
Hernández F Gómez-Ramos A Goñi-Oliver P Avila J Villanueva N 《Protein and peptide letters》2008,15(6):586-589
Glycogen synthase kinase (GSK3) activity present in one cell is the consequence of the sum of the activities of two different proteins called GSK3alpha and GSK3beta. These isoenzymes are coded by two different genes and share an almost identical sequence at their catalytic domain, but differ in the sequence of putative regulatory regions. In this review, we propose that glycine repeats present only in GSK3alpha may result in the different cleavage of both isoenzymes by the protease calpain, a cleavage that modifies GSK3 activity. 相似文献
20.
Enzymatic glycogen regulation in mouse splenocytes cultured in vitro with and without LPS, was studied from 0-72 h. Increased [3H]glucose uptake and hexokinase activity demonstrated the activation of cells treated with LPS. There was a greater time-dependent increase of cellular glycogen content in LPS-stimulated cells as compared to control. Glycogen synthetase I in LPS-stimulated cells increased about 200% above control cells to a plateau at 48 h, while in unstimulated cells there was little increase throughout. Glycogen synthetase D increased continually to 72 h in both groups. In the stimulated cells, phosphorylase increased only 90% above control cells up to 48 h. It was concluded that the increased glycogen content of LPS-stimulated cells seen at 48 h may result from an increase in both glycogen synthetase I and D activity compared to lesser increase in hydrolysis. However, between 48 and 72 h, the period of RNA and DNA increased synthesis, the glycogen content of stimulated cells did not increase further, consistent with the observation that synthetase I activity remained constant and synthetase D decreased. Thus, following mitogenic stimulation, the net effect of the enzymatic regulation is to increase cellular glycogen, as an energy source for subsequent events. 相似文献