首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility that the availability of ATP may affect the rate of synthesis of carbamoyl phosphate (measured as citrulline) by carbamoyl phosphate synthase (ammonia) was studied using respiring isolated rat liver mitochondria incubated with added ADP, with hexokinase, glucose, and ATP, or with atractylate, in order to enhance or prevent the efflux of mitochondrial ATP. The effects of these agents were compared with those on oxaloacetate synthesis from pyruvate. Addition of hexokinase, glucose, and ATP to isolated mitochondria resulted in an inhibition of citrulline synthesis which was proportional to the amounts of glucose 6-phosphate formed; under these conditions, matrix ATP and ATP/ADP tended to decrease. The addition of increasing amounts of ADP also resulted in proportional inhibition of citrulline synthesis, but in this case the matrix content of ATP and ADP increased, and ATP/ADP decreased very slightly. In the presence of atractylate, citrulline synthesis was maximal despite a 30% decrease in matrix ATP and ATP/ADP. These effects were observed whether pyruvate, succinate, glutamate, or β-OH-butyrate was used as the respiratory substrate. ADP, the hexokinase system, and atractylate had qualitatively similar but much less pronounced effects on oxaloacetate synthesis from pyruvate. Within the limits of variation observed in these experiments, the rate of synthesis of citrulline appears not to be affected by the matrix content of total ATP, total ADP, or by ATP/ADP. It is affected, however, by the velocity of translocation of ATP into the extramitochondrial medium. These findings suggest that carbamoyl phosphate synthase (ammonia) may be loosely associated with the mitochondrial inner membrane, and may compete for ATP with the ATP-ADP translocator to an extent determined by the extramitochondrial demands for ATP.  相似文献   

2.
Osmotic shock was found to be better than freezing and thawing, a French press, or sonic oscillation for the preparation of submitochondrial particles from mung bean (Phaseolus aureus) hypocotyl mitochondria. Particles prepared by osmotic shock rapidly oxidize reduced nicotinamide adenine dinucleotide and succinate, but they oxidize malate slowly. NADH oxidation was slightly stimulated by cytochrome c, ATP, and ADP; succinate oxidation was markedly increased by ATP, slightly by ADP and cytochrome c; and malate oxidation required the addition of NAD+ NADH oxidation is inhibited weakly by amytal, completely by antimycin A and KCN, but not by rotenone. Chlorsuccinate, malonate, antimycin A, and KCN inhibit succinate oxidation. The action of antimycin A and KCN is incomplete, while chlorsuccinate and malonate were competitive inhibitors. Antimycin A combined stoichiometrically with particle protein in the ratio of 0.23 millimicromole per milligram of protein.  相似文献   

3.
We have studied the effects of ATP and ADP on the oxidation of malate by coupled and uncoupled mitochondria prepared from etiolated hypocotyls of mung bean (Vigna radiata L.).

In coupled mitochondria, ATP (1 millimolar) increased pyruvate production and decreased oxaloacetate formation without altering the rate of oxygen consumption. ATP also significantly decreased oxaloacetate production and increased pyruvate production in mitochondria that were uncoupled by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone plus oligomycin.

In coupled mitochondria, ADP (1 millimolar) increased the production of both pyruvate and oxaloacetate concomitantly with the acceleration of oxygen uptake to the state 3 rate. The effects of ADP were largely eliminated in uncoupled mitochondria. These results indicate that, whereas the ADP stimulation of oxaloacetate and pyruvate production in the coupled mitochondria is brought about primarily as the result of the accelerated rates of electron transport and NADH oxidation by the respiratory chain in state 3, ATP has significant regulatory effects independent of those that might be exerted by control of electron transport.

  相似文献   

4.
5.
The mechanisms and accurate control of citrate oxidation by Percoll-purified potato (Solanum tuberosum) tuber mitochondria were characterized in various metabolic conditions by recording time course evolution of the citric acid cycle related intermediates and O2 consumption. Intact potato tuber mitochondria showed good rates of citrate oxidation, provided that nonlimiting amounts of NAD+ and thiamine pyrophosphate were present in the matrix space. Addition of ATP increased initial oxidation rates, by activation of the energy-dependent net citrate uptake, and stimulated succinate and malate formation. When the intramitochondrial NADH to NAD+ ratio was high, α-ketoglutarate only was excreted from the matrix space. After addition of ADP, aspartate, or oxaloacetate, which decreased the NADH to NAD+ ratio, flux rates through the Krebs cycle dehydrogenases were strongly increased and α-ketoglutarate, succinate, and malate accumulated up to steady-state concentrations in the reaction medium. It was concluded that NADH to NAD+ ratio could be the primary signal for coordination of fluxes through electron transport chain or malate dehydrogenase and NAD+-linked Krebs cycle dehydrogenases. In addition, these results clearly showed that the tricarboxylic acid cycle could serve as an important source of carbon skeletons for extra-mitochondrial synthetic processes, according to supply and demand of metabolites.  相似文献   

6.
Yukiko Tokumitsu  Michio Ui 《BBA》1973,292(2):325-337
1. The mitochondrial level of AMP gradually diminishes during incubation of mitochondria with glutamate but does not with succinate. This decline of AMP, associated with stoichiometric increase in ADP and/or ATP, is accelerated by the addition of electron acceptors or 2,4-dinitrophenol, while arsenite, arsenate and rotenone are inhibitory. These results are in agreement with the view that AMP is phosphorylated to ADP in the inner space of rat liver mitochondria via succinyl-CoA synthetase (succinate: CoA ligase (GDP), EC 6.2.1.4) and GTP:AMP phosphotransferase dependent on the oxidation of 2-oxoglutarate, which is promoted by the transfer of electron from NADH to the respiratory chain.2. Studies of the periodical changes of chemical quantities of adenine nucleotides as well as of their labelling with 32Pi reveals the following characteristics concerning mitochondrial phosphorylation. (i) In contrast to the mass action ratio of ATP to ADP, the ratio of ADP to AMP is not affected by the intramitochondrial concentration of Pi. (ii) 32Pi, externally added, is incorporated into ADP much more slowly than into γ-phosphate of ATP. (iii) Conversely, ATP loses its radioactivity from γ-phosphate position more rapidly than [32P]ADP when 32P-labelled mitochondria are incubated with non-radioactive Pi.3. In order to elucidate the above characteristic properties of phosphorylation, a hypothetical scheme is proposed which postulates the two separate compartments in the intramitochondrial pool of Pi; one readily communicates with external Pi and is utilized for the phosphorylation of ADP in oxidative phosphorylation, while the other less readily communicates with external Pi and serves as the precursor of ADP via succinyl-CoA synthetase and GTP:AMP phosphotransferase.  相似文献   

7.
1. The fixation of CO(2) by pyruvate carboxylase in isolated rat brain mitochondria was investigated. 2. In the presence of pyruvate, ATP, inorganic phosphate and magnesium, rat brain mitochondria fixed H(14)CO(3) (-) into tricarboxylic acid-cycle intermediates at a rate of about 250nmol/30min per mg of protein. 3. Citrate and malate were the main radioactive products with citrate containing most of the radioactivity fixed. The observed rates of H(14)CO(3) (-) fixation and citrate formation correlated with the measured activities of pyruvate carboxylase and citrate synthase in the mitochondria. 4. The carboxylation of pyruvate by the mitochondria had an apparent K(m) for pyruvate of about 0.5mm. 5. Pyruvate carboxylation was inhibited by ADP and dinitrophenol. 6. Malate, succinate, fumarate and oxaloacetate inhibited the carboxylation of pyruvate whereas glutamate stimulated it. 7. The results suggest that the metabolism of pyruvate via pyruvate carboxylase in brain mitochondria is regulated, in part, by the intramitochondrial concentrations of pyruvate, oxaloacetate and the ATP:ADP ratio.  相似文献   

8.
In order to locate sites of action of thyroid hormone on mitochondrial oxidative phosphorylation we have used an experimental application of control analysis as previously described [Groen, Wanders, Westerhoff, Van der Meer & Tager (1982) J. Biol. Chem. 257, 2754-2757]. Rat-liver mitochondria were isolated from hypothyroid rats or from hypothyroid rats 24 h after treatment with a single dose of 3,3',5-triiodothyronine (T3). The amount of control exerted by four different steps on State-3 respiration with succinate as respiratory substrate was quantified by using specific inhibitors. The hormone treatment resulted in an increase in the flux control coefficient of the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase and a decrease in the flux control coefficient of the bc1-complex. The results of this analysis indicate that thyroid hormone treatment results in an activation of the bc1-complex and of at least one other enzyme, possibly succinate dehydrogenase. Measurement of the extramitochondrial ATP/ADP ratio at different rates of respiration (induced by addition of different amounts of hexokinase in the presence of glucose and ATP) showed that the adenine nucleotide translocator operates at a higher (ATP/ADP)out after T3 treatment, which supports previous reports on stimulation of this step by thyroid hormone.  相似文献   

9.
Mitochondria from bundle sheath cells of the phosphoenolpyruvate carboxykinase-type C4 species Urochloa panicoides were shown to have metabolic properties consistent with a role in C4 photosynthesis predicted from earlier studies. The rate of O2 uptake in response to added malate plus ADP was at least five times the activity observed with NADH, glycine, or succinate. With malate plus ADP the O2 uptake rate averaged about 150 nmol O2 min-1 mg-1 protein, equivalent to about 0.6 mumol min-1 mg-1 of extracted chlorophyll. About half of this activity was apparently phosphorylation-linked with ADP/O2 ratios of about 4. Studies with electron transport inhibitors suggested that about 65% of this malate oxidation is cytochrome oxidase-terminated with a minor component mediated via the alternative oxidase. These mitochondria supported rapid rates of pyruvate production from malate and this activity was also stimulated by ADP but blocked by inhibitors of electron transport. Adding oxaloacetate increased pyruvate production but inhibited O2 uptake. The results were consistent with the notion that in this subgroup of C4 species mitochondrial-located NAD malic enzyme contributes substantially to total C4 acid decarboxylation. This enzyme is apparently also the primary source of NADH necessary to generate the ATP required for phosphoenolpyruvate carboxykinase-mediated oxaloacetate decarboxylation.  相似文献   

10.
11.
The limiting factors of the involvement of malate dehydrogenase in mitochondrial malate oxidation were investigated by using Percoll-purified potato tuber mitochondria. The respective roles of reduced pyridine nucleotides, oxaloacetate, and adenine nucleotides were studied under conditions of high or low phosphorylation potential (Pi + ADP/ATP ratio). Under conditions of high phosphorylation potential, the limitation of malate dehydrogenase activity was caused by the accumulation of oxaloacetate in the medium. In the absence of ADP (phosphorylation potential close to zero), ATP was responsible for the inhibition of malate dehydrogenase activity rather than oxaloacetate or reduced pyridine nucleotides.  相似文献   

12.
The transport of ATP out of mitochondria and uptake of ADP and Pi into the matrix are coupled to the uptake of one proton (Klingenberg, M., and Rottenberg, H. (1977) Eur. J. Biochem. 73, 125--130). According to the chemiosmotic hypothesis of oxidative phosphorylation this coupling of nucleotide and Pi transport to proton transport implies that the P/O ratio for the synthesis and transport of ATP to the external medium is less than the P/O ratio for the synthesis of ATP inside mitochondria. A survey of previous determinations of the P/O ratio of intact mitochondria showed little convincing evidence in support of the currently accepted values of 3 with NADH-linked substrates and 2 with succinate. We have measured P/O ratios in rat liver mitochondria by the ADP pulse method and by 32 Pi esterification, measuring oxygen uptake with an oxygen electrode, and find values close to 2 with beta-hydroxybutyrate as substrate and 1.3 with succinate as substrate in the presence of rotenone to inhibit NADH oxidation. These values were largely independent of pH, temperature, Mg2+ ion concentration, Pi concentration, ADP pulse size, or amount of mitochondria used. We suggest that these are the true values of the P/O ratio for ATP synthesis and transport by mitochondria, and that previously reported higher values resulted from errors in the determination of oxygen uptake and the use of substrates which lead to ATP synthesis by succinate thiokinase.  相似文献   

13.
When envelope-free spinach chloroplasts are incubated with stromal protein, catalytic NADP, catalytic ADP, radioactive bicarbonate and fructose 1,6-bisphosphate, 14CO2 fixation starts immediately upon illumination but oxygen evolution is delayed. The delay is increased by the addition of fructose 6-phosphate and by a variety of factors known (or believed) to increase fructose bisphosphatase activity (such as dithiothreitol, more alkaline pH, higher [Mg] and antimycin A). Conversely, the lag can be decreased or eliminated by the addition of an ATP-generating system. Bearing in mind the known inhibition, by ADP, of sn-phospho-3-glycerate (3-phosphoglycerate) reduction it is concluded that the lag in O2 evolution results from the production of ribulose 5-phosphate from fructose bisphosphate and that this in turn inhibits the reoxidation of NADPH by adversely affecting the ADP/ATP ratio. The results are discussed in their relation to the mode of action of antimycin A and to regulation of the reductive pentose phosphate pathway.  相似文献   

14.
It has been demonstrated that perfusion of myocardium with glutamic acid or tricarboxylic acid cycle intermediates during hypoxia or ischemia, improves cardiac function, increases ATP levels, and stimulates succinate production. In this study isolated adult rat heart cells were used to investigate the mechanism of anaerobic succinate formation and examine beneficial effects attributed to ATP generated by this pathway. Myocytes incubated for 60 min under hypoxic conditions showed a slight loss of ATP from an initial value of 21 +/- 1 nmol/mg protein, a decline of CP from 42 to 17 nmol/mg protein and a fourfold increase in lactic acid production to 1.8 +/- 0.2 mumol/mg protein/h. These metabolite contents were not altered by the addition of malate and 2-oxoglutarate to the incubation medium nor were differences in cell viability observed; however, succinate release was substantially accelerated to 241 +/- 53 nmol/mg protein. Incubation of cells with [U-14C]malate or [2-U-14C]oxoglutarate indicates that succinate is formed directly from malate but not from 2-oxoglutarate. Moreover, anaerobic succinate formation was rotenone sensitive. We conclude that malate reduction to succinate occurs via the reverse action of succinate dehydrogenase in a coupled reaction where NADH is oxidized (and FAD reduced) and ADP is phosphorylated. Furthermore, by transaminating with aspartate to produce oxaloacetate, 2-oxoglutarate stimulates cytosolic malic dehydrogenase activity, whereby malate is formed and NADH is oxidized. In the form of malate, reducing equivalents and substrate are transported into the mitochondria where they are utilized for succinate synthesis.  相似文献   

15.
The influence of the 1,4-dihydropyridines (DHPs), water-soluble glutapyrone available as sodium, potassium and ammonium salts of 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-DHP-4-carboxamide)glutaric acid, from one side, and a lipophylic cerebrocrast, 2-propoxyethyl 2,6-dimethyl-4-(2-difluoromethoxyphenyl)-1,4-DHP-3,5-dicarboxylate, from the other side, on partially damaged mitochondria of the Wistar rat hindlimb muscle was also studied. The following tests were made: (1) rates of endogenous respiration and substrate (succinate) oxidation and oxidative phosphorylation; (2) rates and amplitudes of high-amplitude swelling and contraction after the addition of ATP, ADP and succinate to the previously swollen mitochondria and (3) rate of reversible self-aggregation of mitochondria isolated in salt media after ATP-induced contraction without and in the presence of azidothymidine (AZT). Cerebrocrast (10–100 μM ) partially normalized the endogenous respiration rate and slightly augmented the respiration rate after the addition of succinate and to lesser extent ADP. Cerebrocrast in a concentration-dependent manner (2·5–50 μM ) increased (two-fold at 20–50 μM ) the active contraction amplitude of swollen mitochondria, induced by single or repeated additions of ATP. The influence of cerebrocrast on the ADP- and succinate-induced contractions was less obvious. Unlike cerebrocrast glutapyrone caused a reduction of the ATP-induced contraction amplitude (two-fold at 0·5–5·0 mM ), not impairing the mitochondrial contraction ability in response to ATP or succinate. Pre-exposure to 2·5 mM glutapyrone resulted in at least a 10-fold inhibition of the reversible aggregation rate in the presence of 99 and 198 μM AZT. The results suggest the usefulness of further study of cerebrocrast and glutapyrone in preventing AZT-induced and some other mitochondrial myopathies. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

17.
A mathematical model was used to study the role of various allosteric regulatory mechanisms in the oxidation of glucose and fatty acids by muscle energy metabolism. A large number of such mechanisms were shown to be involved in simultaneous oxidation of both substrates: glycolysis is regulated by the ATP/ADP ratio at the phosphofructokinase (PFK) step; the control over pyruvate dehydrogenase is exercised by the NADHm/NADm+ and CoAsAc/CoAsH ratios as well as by the level of pyruvate; the Krebs cycle is regulated by oxaloacetate and citrate concentrations in the citrate synthase reaction and by the ATP/ADP and NADHm/NADm+ ratios in the isocitrate dehydrogenase reaction. The inhibition of PFK and pyruvate dehydrogenase by excess of CoAsAcyl as well as the inhibition of PFK by citrate are additional equivalent regulatory mechanisms. When glucose alone is oxidized, the levels of citrate, CoAsAcyl, NADHm and CoAsAc decrease drastically within the whole range of physiological ATPase loads; the only regulating factors that remain efficient are the ATP/ADP ratio in glycolysis, the level of pyruvate at the pyruvate dehydrogenase step, the ATP/ADP ratio and the levels of CoAsAc, oxaloacetate and isocitrate in the Krebs cycle.  相似文献   

18.
Glutamate metabolism triggered by oxaloacetate in intact plant mitochondria   总被引:6,自引:0,他引:6  
In Percoll-purified potato tuber mitochondria, glutamate metabolism can be triggered by oxaloacetate, in the presence of ADP and thiamine pyrophosphate. There is a lag phase before O2 uptake is initiated. During this lag period, oxaloacetate is rapidly converted into α-ketoglutarate and succinate, or into malate at the expense of the NADH generated by α-ketoglutarate dehydrogenase. The ratio of the flux rates of both pathways is strongly dependent on the glutamate concentration in the medium. When all the oxaloacetate is consumed, a rapid O2 uptake is initiated. The effects of malonate on glutamate metabolism triggered by oxaloacetate and on α-ketoglutarate oxidation are reported. It is concluded that the inhibition of the succinate dehydrogenase by either malonate or oxaloacetate does not affect the rate of α-ketoglutarate dehydrogenase functioning. All the metabolites accumulated are excreted by the mitochondria in the supernatant. Some of them are then reabsorbed. These results emphasize the importance of the anion carriers in the overall process.  相似文献   

19.
The organophosphorus insecticide parathion depresses the phosphorylation efficiency of mitochondria as inferred from the decrease of RCR and ADP/O ratios. The transmembrane potential (delta psi) developed by energized mitochondria, and depolarization upon ADP addition are also decreased. Furthermore, repolarization is delayed and resumes at a slower rate. The inhibitory action of parathion on phosphorylation efficiency could be related with the following findings: (1) a direct effect on the succinate dehydrogenase-ubiquinone segment of the redox chain; (2) a direct action on the ATP synthetase complex; (3) partial inhibition of the phosphate transporter.  相似文献   

20.
1. Examination of the distribution of L-tri-iodothyronine among rat liver tissue fractions after its intravenous injection into thyroidectomized rats focused attention on mitochondria at very short times after administration. By 15 min this fraction contained 18.5% of the tissue pool; however, the content had decreased sharply by 60 min and even further over the next 3 h. By contrast, the content in all other fractions was constant or increased over 4 h. About 60% of tissue hormone was bound to soluble protein. 2. Mitochondria isolated from thyroidectomized rats showed P/O ratios that were about 50% of those found in normal controls, with both succinate and pyruvate plus malate as substrates. There was no evidence of uncoupling; the respiratory-control ratio was about 6. 3. Mitochondria isolated 15 min after injection of tri-iodothyronine into thyroidectomized rats showed P/O ratios and respiratory-control ratios that were indistinguishable from those obtained in mitochondria from euthyroid animals. The oxidation rate was, however, not restored. 4. Incubation of homogenates of livers taken from thyroidectomized animals injected with L-tri-iodothyronine before isolation of the mitochondria restored the P/O ratio to normal; by contrast, direct addition of hormone to isolated mitochondria had no effect. The role of extramitochondrial factors in rapid tri-iodothyronine action is discussed. 5. Possible mechanisms by which tri-iodothyronine might rapidly alter phosphorylation efficiency are considered: it is concluded that control of adenine nucleotide translocase is unlikely to be involved. 6. The amounts of adenine nucleotides in liver were measured both after thyroidectomy and 15 min after intravenous tri-iodo-thyronine administration to thyroidectomized animals. The concentrations found are consistent with a decreased phosphorylation efficiency in thyroidectomized animals. Tri-iodothyronine injection resulted in very significant changes in the amounts of ATP, ADP and AMP, and in the [ATP]/[ADP] ratio, consonant with those expected from an increased efficiency of ADP phosphorylation. This suggests that the changes seen in isolated mitochondria may indeed reflect a rapid response of liver in vivo to tri-iodo-thyronine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号