首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shed menstrual endometrium is viable and has the ability to implant and grow in women, who eventually develop endometriosis. Many of the cell-to-cell or cell-to-extracellular matrix (ECM) connections are mediated by integrins. Monocyte chemotactic protein (MCP)-1, a potent chemotactic factor produced in many cell types, is elevated in the peritoneal fluid of women with endometriosis. In this study, we investigated whether endometrial stromal cell (ESC) adhesion itself induces the expression of MCP-1 and whether this process is integrin mediated. ESC were plated on Petri dishes and 24-well plates coated with fibronectin, laminin, collagen IV, poly-L-lysine, or mouse anti-human integrin beta(1) and beta(2) monoclonal antibodies. Adherence of ESC to various ECM substrates, except for poly-L-lysine, a non-integrin-dependent adhesion matrix, induced the expression of MCP-1 at both mRNA and protein levels. Engagement of beta(1)-containing integrins was associated with ESC adhesion and resulted in up-regulation of MCP-1 gene expression and protein secretion. Disruption of the actin cytoskeleton by treating ESC with cytochalasin D completely blocked the increase of MCP-1 induced in response to integrin activation. These findings indicate a novel mechanism of MCP-1 regulation. Cell adhesion to ECM is an important event that leads to stimulation of MCP-1 expression, and this process is mediated by integrins.  相似文献   

2.
The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

4.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

5.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

6.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

7.
Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-kappaB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-kappaB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-kappaB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin alpha2beta1 on collagen prevents flow-induced NF-kappaB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-kappaB activation, suggesting a novel therapeutic strategy for treating atherosclerosis.  相似文献   

8.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

9.
Bovine aortic and microvascular endothelial cells showed good adhesion with spreading on fibronectin or collagen IV and to a lower extent on laminin. Recognition of native laminin was due to its long arm fragment E8 and was mediated by alpha 6 integrins as demonstrated by antibody inhibition. A considerably stronger, RGD-dependent interaction was observed with the isolated laminin short arm fragment P1 previously shown to represent a cryptic cell-binding site. No adhesion was observed with the heparin-binding fragment E3. In contrast, murine microvascular endothelial cells transformed by the polyoma middle T oncogene showed preferential adherence and spreading on laminin via its E8 cell-binding site and also showed adhesion to fragment E3. Attachment to laminin fragment P1 and to collagen IV was low or negative and was never followed by spreading. These data show that the transformation of microvascular endothelial cells, which give them the property to form hemangiomas, also leads to changes in cell adhesion to extracellular matrix proteins, particularly to laminin fragments.  相似文献   

10.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

11.
Laminin and fibronectin are glycoproteins that influence cell behavior and mediate cell/substratum adhesion. We have examined the interaction of these macromolecules with the serine protease plasminogen activator (PA) in two types of extracellular matrices; one produced by the murine Engelbreth-Holm-Swarm (EHS) tumor (Matrigel), and another by normal kidney epithelial cells in culture. Matrigel was found to contain significant quantities of tissue-type PA (tPA). Two of the major components of Matrigel, laminin and type IV collagen, were also examined. Tissue-type PA was associated with purified preparations of laminin; however, it was not found associated with type IV collagen. Normal kidney epithelial cells in culture secrete large amounts of urokinase (UK) and deposit a subepithelial matrix containing both laminin and fibronectin. These matrix macromolecules were isolated from the deposited matrix by immunoprecipitation, examined by zymography, and found to contain UK. The potential role of this interaction in the mechanisms of cell migration and matrix remodeling is discussed.  相似文献   

12.
Treatment of chick myoblasts with the glucosidase inhibitors bromoconduritol (BCD) or N-methyl-1-deoxynojirimycin (MDJN), but not the mannosidase I inhibitor 1-deoxymannojirimycin (ManDJN), decreased their rate of adhesion to fibronectin and laminin and increased their rate of adhesion to collagen types I and IV. The adhesion of chick myoblasts to fibronectin, collagen type IV, and laminin was predominantly mediated by beta 1-type integrin(s) as judged by inhibition of adhesion with the beta 1-specific monoclonal antibody JG22. Collagen binding in inhibitor-treated cells remained JG22-sensitive suggesting the inhibitors promote increased activity of a beta 1-type collagen-selective integrin. The effects of BCD, MDJN, and ManDJN on myoblast beta 1-integrin detectable at the myoblast cell surface with JG22 antibody correlated well with their effects on adhesion to fibronectin and laminin, and paralleled the previously reported effects of these agents on myogenesis. Interaction of integrin with the extracellular matrix appears to be required for myoblast terminal differentiation. We found that Mn2+ ions increased the adhesion of myoblasts to extracellular matrix proteins and antagonized the effect of BCD and MDJN on myoblast differentiation, supporting a role for cell-matrix interactions in myogenesis. Inhibition of myogenesis by BCD or MDJN was not reversed by growth under low serum conditions, suggesting these agents do not act by maintaining myoblast in a proliferative state.  相似文献   

13.
Granzyme A (GzmA) is a serine protease (trypsin-like specificity) produced in cytotoxic lymphocytes. This enzyme is believed to enter virus-infected cells and growing tumors and induce apoptosis, but the roles of GzmA expressed in lymphocytes scattered through the epithelial layer of the normal small intestine are unknown. In the present study, recombinant rat GzmA (rGzmA) was found to cause morphological changes and detachment of a non-transformed rat small-intestinal epithelial cell line IEC-6, although the rGzmA-treated cells detached as aggregates with no changes characteristic of apoptosis. rGzmA-induced deformation and detachment occurred in IEC-6 cells plated with collagen type IV and fibronectin, but not in those plated with laminin. These findings suggest that GzmA in the normal small intestine participates in the reduction of adhesion between epithelial cells and basement membranes, through its ability to cleave extracellular matrix components.  相似文献   

14.
Granzyme A (GzmA) is a serine protease (trypsin-like specificity) produced in cytotoxic lymphocytes. This enzyme is believed to enter virus-infected cells and growing tumors and induce apoptosis, but the roles of GzmA expressed in lymphocytes scattered through the epithelial layer of the normal small intestine are unknown. In the present study, recombinant rat GzmA (rGzmA) was found to cause morphological changes and detachment of a non-transformed rat small-intestinal epithelial cell line IEC-6, although the rGzmA-treated cells detached as aggregates with no changes characteristic of apoptosis. rGzmA-induced deformation and detachment occurred in IEC-6 cells plated with collagen type IV and fibronectin, but not in those plated with laminin. These findings suggest that GzmA in the normal small intestine participates in the reduction of adhesion between epithelial cells and basement membranes, through its ability to cleave extracellular matrix components.  相似文献   

15.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

16.
The effect on phenotypic expression of rabbit vascular smooth muscle cells (SMC) of the interstitial matrix proteins collagen I and fibronectin, the basal lamina proteins collagen IV and laminin, and the serum adhesion protein vitronectin was examined in culture. Experiments were performed in foetal calf serum stripped of fibronectin and vitronectin to eliminate their confounding effects. All the proteins promoted adhesion to the plastic culture dish (in a concentration dependent manner) of SMC freshly isolated from the artery wall. These cells had a high volume density of myofilaments (Vvmyo) in their cytoplasm. Laminin was best at maintaining SMC with a high Vvmyo (Vvmyo = 49.8%) followed by collagen IV (41.7%). Cells plated on vitronectin showed the lowest Vvmyo (31.3%). The results support the concept that the SMC basal lamina has a role in maintaining cells in the high Vvmyo phenotype.  相似文献   

17.
The effect on phenotypic expression of rabbit vascular smooth muscle cells (SMC) of the interstitial matrix proteins collagen I and fibronectin, the basal lamina proteins collagen IV and laminin, and the serum adhesion protein vitronectin was examined in culture. Experiments were performed in foetal calf serum stripped of fibronectin and vitronectin to eliminate their confounding effects. All the proteins promoted adhesion to the plastic culture dish (in a concentration dependent manner) of SMC freshly isolated from the artery wall. These cells had a high volume density of myofilaments (Vvmyo) in their cytoplasm. Laminin was best at maintaining SMC with a high Vvmyo (Vvmyo = 49.8%) followed by collagen IV (41.7%). Cells plated on vitronectin showed the lowest Vvmyo (31.3%). The results support the concept that the SMC basal lamina has a role in maintaining cells in the high Vvmyo phenotype.  相似文献   

18.
A Collagen-Binding S-Layer Protein in Lactobacillus crispatus   总被引:7,自引:0,他引:7       下载免费PDF全文
Two S-layer-expressing strains, Lactobacillus crispatus JCM 5810 and Lactobacillus acidophilus JCM 1132, were assessed for adherence to proteins of the mammalian extracellular matrix. L. crispatus JCM 5810 adhered efficiently to immobilized type IV and I collagens, laminin, and, with a lower affinity, to type V collagen and fibronectin. Strain JCM 1132 did not exhibit detectable adhesiveness. Within the fibronectin molecule, JCM 5810 recognized the 120-kDa cell-binding fragment of the protein, while no bacterial adhesion to the amino-terminal 30-kDa or the gelatin-binding 40-kDa fragment was detected. JCM 5810 but not JCM 1132 also bound (sup125)I-labelled soluble type IV collagen, and this binding was efficiently inhibited by unlabelled type IV and I collagens and less efficiently by type V collagen, but not by laminin or fibronectin. L. crispatus JCM 5810 but not L. acidophilus JCM 1132 also adhered to Matrigel, a reconstituted basement membrane preparation from mouse sarcoma cells, as well as to the extracellular matrix prepared from human Intestine 407 cells. S-layers from both strains were extracted with 2 M guanidine hydrochloride, separated by electrophoresis, and transferred to nitrocellulose sheets. The S-layer protein from JCM 5810 bound (sup125)I-labelled type IV collagen, whereas no binding was seen with the S-layer protein from JCM 1132. Binding of (sup125)I-collagen IV to the JCM 5810 S-layer protein was effectively inhibited by unlabelled type I and IV collagens but not by type V collagen, laminin, or fibronectin. It was concluded that L. crispatus JCM 5810 has the capacity to adhere to human subintestinal extracellular matrix via a collagen-binding S-layer.  相似文献   

19.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

20.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号