首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

2.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. Adrenaline, acting on alpha-adrenoceptors, and Substance P also stimulated net loss of PtdIns(4,5)P2. The beta-adrenoceptor agonist, isoprenaline, and the Ca2+ ionophore, ionomycin, failed to affect labelled PtdIns(4,5)P2 or PtdIns4P. By chelation of extracellular Ca2+ with excess EGTA, and by an experimental protocol that eliminates cellular Ca2+ release, it was demonstrated that the agonist-induced decrease in PtdIns(4,5)P2 is independent of both Ca2+ influx and Ca2+ release. These results may suggest that net PtdIns(4,5)P2 breakdown is an early event in the stimulus-response pathway of the parotid acinar cell and could be directly involved in the mechanism of agonist-induced Ca2+ release from the plasma membrane.  相似文献   

3.
C2 domains are conserved protein modules in many eukaryotic signaling proteins, including the protein kinase (PKCs). The C2 domains of classical PKCs bind to membranes in a Ca(2+)-dependent manner and thereby act as cellular Ca(2+) effectors. Recent findings suggest that the C2 domain of PKCalpha interacts specifically with phosphatidylinositols 4,5-bisphosphate (PtdIns(4,5)P(2)) through its lysine rich cluster, for which it shows higher affinity than for POPS. In this work, we compared the three C2 domains of classical PKCs. Isothermal titration calorimetry revealed that the C2 domains of PKCalpha and beta display a greater capacity to bind to PtdIns(4,5)P(2)-containing vesicles than the C2 domain of PKCgamma. Comparative studies using lipid vesicles containing both POPS and PtdIns(4,5)P(2) as ligands revealed that the domains behave as PtdIns(4,5)P(2)-binding modules rather than as POPS-binding modules, suggesting that the presence of the phosphoinositide in membranes increases the affinity of each domain. When the magnitude of PtdIns(4,5)P(2) binding was compared with that of other polyphosphate phosphatidylinositols, it was seen to be greater in both PKCbeta- and PKCgamma-C2 domains. The concentration of Ca(2+) required to bind to membranes was seen to be lower in the presence of PtdIns(4,5)P(2) for all C2 domains, especially PKCalpha. In vivo experiments using differentiated PC12 cells transfected with each C2 domain fused to ECFP and stimulated with ATP demonstrated that, at limiting intracellular concentration of Ca(2+), the three C2 domains translocate to the plasma membrane at very similar rates. However, the plasma membrane dissociation event differed in each case, PKCalpha persisting for the longest time in the plasma membrane, followed by PKCgamma and, finally, PKCbeta, which probably reflects the different levels of Ca(2+) needed by each domain and their different affinities for PtdIns(4,5)P(2).  相似文献   

4.
Annexin A2 is a phospholipid-binding protein that forms a heterotetramer (annexin II-p11 heterotetramer; A2t) with p11 (S100A10). It has been reported that annexin A2 is involved in binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and in inducing membrane microdomain formation. To understand the mechanisms underlying these findings, we determined the membrane binding properties of annexin A2 wild type and mutants both as monomer and as A2t. Our results from surface plasmon resonance analysis showed that A2t and annexin A2 has modest selectivity for PtdIns(4,5)P2 over other phosphoinositides, which is conferred by conserved basic residues, including Lys279 and Lys281, on the convex surface of annexin A2. Fluorescence microscopy measurements using giant unilamellar vesicles showed that A2t of wild type, but not (K279A)2-(p11)2 or (K281A)2-(p11)2, specifically induced the formation of 1-microm-sized PtdIns(4,5)P2 clusters, which were stabilized by cholesterol. Collectively, these studies elucidate the structural determinant of the PtdIns(4,5)P2 selectivity of A2t and suggest that A2t may be involved in the regulation of PtdIns(4,5)P2 clustering in the cell.  相似文献   

5.
The phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] [and to a lesser extent, the phosphatidylinositol-4-phosphate (PtdIns4P)] phosphodiesterase and monoesterase activities of a rat brain supernatant have been studied by using 32P-labelled substrates prepared from human red blood cells. PtdIns(4,5)P2 monoesterase is maximally stimulated by Mg2+, though some activity is detectable in Ca2+/EDTA (Mg2+-free) buffers. The phosphodiesterase, however, is Ca2+-dependent, and in Ca2+/EDTA buffers with the pure lipid as substrate, shows maximal activity at 100 nM-Ca2+. If PtdIns(4,5)P2 is presented as a component of a lipid mixture of similar composition to that of the inner half of the lipid bilayer of a rat liver plasma membrane, the phosphodiesterase shows considerable activity at 1 microM-Ca2+, and is maximal at 100 microM-Ca2+. However, if it is assayed against the same substrate in Ca2+/EGTA buffers with 3mM-Mg2+ and 80 mM-KCl present (as an approximate parallel with the ionic environment in vivo), it shows no detectable activity below 100 microM-Ca2+, and is maximal at 1 mM-Ca2+. The monoesterase can hydrolyse PtdIns(4,5)P2 in such a lipid mixture at all Ca2+ concentrations with 1 or 3 mM-Mg2+ present. PtdIns(4,5)P2 phosphodiesterase can be induced to attack its substrate under ionic conditions similar to those in vivo (0.1-1 microM-Ca2+; 1 mM-Mg2+; 80 mM-KCl) by the conversion of its substrate into a non-bilayer configuration. If given such a substrate [by mixing PtdIns(4,5)P2 with an excess of phosphatidylethanolamine (PtdEtn)] it shows a shallow Ca2+-dependency curve from 0.1 to 100 microM and then a steep rise to 1 mM-Ca2+. Together these observations lead us to the suggestion that a perturbation in a membrane in vivo equivalent to a non-bilayer configuration would be sufficient to induce phosphodiesterase-catalysed PtdIns(4,5)P2 breakdown. When given substrates mixed with excess PtdEtn at pH 7.25 (or 5.5), 1 microM-Ca2+, 1 mM-Mg2+ and 80 mM-KCl, the rat brain supernatant phosphodiesterase activity hydrolysed PtdIns(4,5)P 50-100-fold faster than it hydrolysed phosphatidylinositol (PtdIns). If the supernatant was presented with such a non-bilayer mixture containing a ten-fold excess of PtdIns over PtdIns(4,5)P2, the latter phospholipid was still hydrolysed by phosphodiesterasic cleavage at nearly ten times the rate of the former. Receptor-stimulated phosphodiesterase cleavage of polyphosphoinositides is an early event in cell activation by many agonists. The properties of PtdIns(4,5)P2 phosphodiesterase in vitro suggest that a change in the presentation of its substrate would be a sensitive and sufficient control on the enzyme's activity in vivo.  相似文献   

6.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

7.
We studied the possibility that hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] may be the initiating event for the increase in [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) during carbachol and pancreozymin (cholecystokinin-octapeptide) action in the rat pancreas. After prelabelling acini for 2h, [32P]Pi incorporation into PtdA, PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P) had reached equilibrium. Subsequent addition of carbachol or pancreozymin caused 32P in PtdIns(4,5)P2 to decrease by 30-50% within 10-15 s, and this was followed by sequential increases in [32P]Pi incorporation into PtdA and PtdIns. Similar changes in 32P-labelling of PtdIns4P were not consistently observed. Confirmation that the decrease in 32P in chromatographically-purified PtdIns(4,5)P2 reflected an actual decrease in this substance was provided by the fact that similar results were obtained (a) when PtdIns(4,5)P2 was prelabelled with [2-3H]inositol, and (b) when PtdIns(4,5)P2 was measured as its specific product (glycerophosphoinositol bisphosphate) after methanolic alkaline hydrolysis and ion-exchange chromatography. The secretogogue-induced breakdown of PtdIns(4,5)P2 was not inhibited by Ca2+ deficiency (severe enough to inhibit amylase secretion and Ca2+-dependent hydrolysis of PtdIns), and ionophore A23187 treatment did not provoke PtdIns(4,5)P2 hydrolysis. The increase in the hydrolysis of PtdIns(4,5)P2 and the increase in [32P]Pi incorporation into PtdA commenced at the same concentration of carbachol in dose-response studies. Our findings suggest that the hydrolysis of PtdIns(4,5)P2 is an early event in the action of pancreatic secretogogues that mobilize Ca2+, and it is possible that this hydrolysis may initiate the Ca2+-independent labelling of PtdA and PtdIns. Ca2+ mobilization may follow these responses, and subsequently cause Ca2+-dependent hydrolysis of PtdIns and exocytosis.  相似文献   

8.
Signal transduction through protein kinase Cs (PKCs) strongly depends on their subcellular localization. Here, we investigate the molecular determinants of PKCalpha localization by using a model system of neural growth factor (NGF)-differentiated pheochromocytoma (PC12) cells and extracellular stimulation with ATP. Strikingly, the Ca2+ influx, initiated by the ATP stimulation of P2X receptors, rather than the Ca2+ released from the intracellular stores, was the driving force behind the translocation of PKCalpha to the plasma membrane. Furthermore, the localization process depended on two regions of the C2 domain: the Ca2+-binding region and the lysine-rich cluster, which bind Ca2+ and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], respectively. It was demonstrated that diacylglycerol was not involved in the localization of PKCalpha through its C1 domain, and in lieu, the presence of PtdIns(4,5)P2 increased the permanence of PKCalpha in the plasma membrane. Finally, it also was shown that ATP cooperated with NGF during the differentiation process of PC12 cells by increasing the length of the neurites, an effect that was inhibited when the cells were incubated in the presence of a specific inhibitor of PKCalpha, suggesting a possible role for this isoenzyme in the neural differentiation process. Overall, these results show a novel mechanism of PKCalpha activation in differentiated PC12 cells, where Ca2+ influx, together with the endogenous PtdIns(4,5)P2, anchor PKCalpha to the plasma membrane through two distinct motifs of its C2 domain, leading to enzyme activation.  相似文献   

9.
Experiments were carried out to assess the effects of secretagogues on the polyphosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] on preparations of exocrine pancreas in vitro. Carbachol and caerulein provoked a rapid (less than 1 min) breakdown of 15-20% of [32P]PtdIns(4,5)P2 in isolated pancreatic acini, but did not affect [32P]PtdIns4P. In contrast, the Ca2+ ionophore ionomycin had no immediate effect on the levels of either inositide but caused a parallel fall in both lipids after 5-10 min. A similar decrease in [32P]PtdIns(4,5)P2 due to carbachol was obtained with isolated acini and isolated cells, despite the fact that the secretory response of isolated cells was considerably less than that of isolated acini. Loss of [32P]PtdIns(4,5)P2 elicited by carbachol or caerulein was unaffected either by the addition of EGTA in excess of extracellular Ca2+ or when a protocol was employed that eliminated caerulein-induced intracellular Ca2+-release. These results suggest that agonist-induced PtdIns(4,5)P2 breakdown in the exocrine pancreas may be an early step in the stimulus-response coupling pathway and also suggest that this breakdown is not dependent on Ca2+-mobilization.  相似文献   

10.
Epsin and AP180/CALM are endocytotic accessory proteins that have been implicated in the formation of clathrin-coated pits. Both proteins have phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding domains in their N termini, but these domains are structurally and functionally different. To understand the basis of their distinct properties, we measured the PtdIns(4,5)P2-dependent membrane binding of the epsin N-terminal homology (ENTH) domain and the AP180 N-terminal homology (ANTH) domain by means of surface plasmon resonance and monolayer penetration techniques and also calculated the effect of PtdIns(4,5)P2 on the electrostatic potential of these domains. PtdIns(4,5)P2 enhances the electrostatic membrane association of both domains; however, PtdIns(4,5)P2 binding exerts distinct effects on their membrane dissociation. Specifically, PtdIns(4,5)P2 induces the membrane penetration of the N-terminal alpha-helix of the ENTH domain, which slows the membrane dissociation of the domain and triggers the membrane deformation. These results provide the biophysical explanation for the membrane bending activity of epsin and its ENTH domain.  相似文献   

11.
Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2 (and PtdIns4P?), and that the simultaneous disappearance of phosphatidylinositol might be a result of its consumption for the continuing synthesis of polyphosphoinositides.  相似文献   

12.
A phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-hydrolytic activity was found to be present in the human platelet membrane fraction, with 20% of the total activity of the homogenate. The membrane-associated phospholipase C activity was extracted with 1% deoxycholate (DOC). The DOC-extractable phospholipase C was partially purified approx. 126-fold to a specific activity of 0.58 mumol of PtdIns-(4,5)P2 cleaved/min per mg of protein, by Q-Sepharose, heparin-Sepharose and Ultrogel AcA-44 column chromatographies. This purified DOC-extractable phospholipase C had an Mr of approx. 110,000, as determined by Ultrogel AcA-44 gel filtration. The enzyme exhibits a maximal hydrolysis for PtdIns-(4,5)P2 at pH 6.5 in the presence of 0.1% DOC. The addition of 0.1% DOC caused a marked activation of both PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) hydrolyses by the enzyme. The enzyme hydrolysed PtdIns(4,5)P2 and PtdIns in a different Ca2+-dependent manner; the maximal hydrolyses for PtdIns(4,5)P2 and PtdIns were obtained at 4 microM- and 0.5 mM-Ca2+ respectively. In the presence of 1 mM-Mg2+, PtdIns(4,5)P2-hydrolytic activity was decreased at all Ca2+ concentrations examined, but PtdIns-hydrolytic activity was not affected.  相似文献   

13.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

14.
R H Michell 《Life sciences》1983,32(18):2083-2085
All cell-surface receptors that bring about a rise in cytosol Ca2+ concentration upon stimulation appear also to provoke enhanced metabolism of inositol phospholipids. For many years, it has been thought that the initiating reaction in this response is phosphodiesterase-catalysed breakdown of phosphatidylinositol (PtdIns). However, recent experiments with hepatocytes, parotid gland and blowfly salivary gland have demonstrated very rapid breakdown of phosphatidylinositol-4, 5-bisphosphate (PtdIns4,5P2), and maybe also of PtdIns4P, in cells stimulated by Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, muscarinic cholinergic, substance P and 5-hydroxytryptamine). As with the disappearance of PtdIns that had been studied previously, this response is not Ca2+-mediated and shows a receptor occupation dose-response curve. The PtdIns 'breakdown' studied previously was probably utilization of PtdIns for resynthesis of polyphosphoinositides to replace the degraded PtdIns4,5P2. We suggest that the primary event in receptor-stimulated inositol phospholipid metabolism is phosphodiesterase attack upon PtdIns4,5P2 to yield 1,2-diacylglycerol and inositol-1,4, 5-trisphosphate, and that this is an essential coupling event in a general mechanism by which receptors mobilize Ca2+ in the cytosol of stimulated cells.  相似文献   

15.
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.  相似文献   

16.
The eicosanoids are centrally involved in the onset and resolution of inflammatory processes. A key enzyme in eicosanoid biosynthesis during inflammation is group IVA phospholipase A2 (also known as cytosolic phospholipase A2alpha, cPLA2alpha). This enzyme is responsible for generating free arachidonic acid from membrane phospholipids. cPLA2alpha translocates to perinuclear membranes shortly after cell activation, in a process that is governed by the increased availability of intracellular Ca2+. However, cPLA2alpha also catalyzes membrane phospholipid hydrolysis in response to agonists that do not mobilize intracellular Ca2+. How cPLA2alpha interacts with membranes under these conditions is a major, still unresolved issue. Here, we report that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] promotes translocation of cPLA2alpha to perinuclear membranes of intact cells in a manner that is independent of rises in the intracellular Ca2+ concentration. PtdIns(4,5)P2 anchors the enzyme to perinuclear membranes and allows for a proper interaction with its phospholipid substrate to release arachidonic acid.  相似文献   

17.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

18.
Maitotoxin, a potent marine toxin extracted from peredinians, was found to mimic fertilization in Xenopus oocytes and to trigger the breakdown of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2, the precursor of inositol 1,4,5-trisphosphate], an increase of intracellular pCa and the cortical reaction, including the exocytosis of cortical granules and a wave-like propagation of contraction in the animal hemisphere. All these effects of maitotoxin required the presence of external calcium. Moreover, the toxin considerably increased Ca2+ influx in amphibian oocytes arrested at first meiotic prophase, due to the permanent activation of voltage-dependent Ca2+ channels. Nevertheless it is doubtful that maitotoxin acts primarily as a Ca2+ ionophore or at the level of Ca2+ channels. Indeed no stimulation of Ca2+ uptake was observed in metaphase-II-arrested oocytes, although maitotoxin readily triggered the breakdown of PtdIns(4,5)P2 as well as the cortical reaction in such cells. On the other hand, PtdIns(4,5)P2 breakdown was not reduced in oocytes microinjected with EGTA, although the calcium chelator prevented the oocytes from undergoing the cortical reaction. Taken together, these findings support the view that the toxin might act primarily by increasing PtdIns(4,5)P2 phosphodiesterase activity.  相似文献   

19.
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of diverse PI specificities of PX domains, we determined the crystal structure of the PX domain from phosphoinositide 3-kinase C2alpha (PI3K-C2alpha), which binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). To delineate the mechanism by which this PX domain interacts with membranes, we measured the membrane binding of the wild type domain and mutants by surface plasmon resonance and monolayer techniques. This PX domain contains a signature PI-binding site that is optimized for PtdIns(4,5)P(2) binding. The membrane binding of the PX domain is initiated by nonspecific electrostatic interactions followed by the membrane penetration of hydrophobic residues. Membrane penetration is specifically enhanced by PtdIns(4,5)P(2). Furthermore, the PX domain displayed significantly higher PtdIns(4,5)P(2) membrane affinity and specificity when compared with the PI3K-C2alpha C2 domain, demonstrating that high affinity PtdIns(4,5)P(2) binding was facilitated by the PX domain in full-length PI3K-C2alpha. Together, these studies provide new structural insight into the diverse PI specificities of PX domains and elucidate the mechanism by which the PI3K-C2alpha PX domain interacts with PtdIns(4,5)P(2)-containing membranes and thereby mediates the membrane recruitment of PI3K-C2alpha.  相似文献   

20.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号