首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.  相似文献   

2.
Apple trees (Malus domestica Borkh.) may be affected by apple proliferation (AP), caused by ‘Candidatus Phytoplasma mali’. Some plants can spontaneously recover from the disease, which implies the disappearance of symptoms through a phenomenon known as recovery. In this article it is shown that NAD(P)H peroxidases of leaf plasma membrane‐enriched fractions exhibited a higher activity in samples from both AP‐diseased and recovered plants. In addition, an increase in endogenous SA was characteristic of the symptomatic plants, since its content increased in samples obtained from diseased apple trees. In agreement, phenylalanine ammonia lyase (PAL) activity, a key enzyme of the phenylpropanoid pathway, was increased too. Jasmonic acid (JA) increased only during recovery, in a phase subsequent to the pathological state, and in concomitance to a decline of salicylic acid (SA). Oxylipin pathway, responsible for JA synthesis, was not induced during the development of AP‐disease, but it appeared to be stimulated when the recovery occurred. Accordingly, lipoxygenase (LOX) activity, detected in plasma membrane‐enriched fractions, showed an increase in apple leaves obtained from recovered plants. This enhancement was paralleled by an increase of hydroperoxide lyase (HPL) activity, detected in leaf microsomes, albeit the latter enzyme was activated in either the disease or recovery conditions. Hence, a reciprocal antagonism between SA‐ and JA‐pathways could be suggested as an effective mechanism by which apple plants react to phytoplasma invasions, thereby providing a suitable defense response leading to the establishment of the recovery phenomenon.  相似文献   

3.
N-Acylethanolamines (NAEs) constitute a new class of plant lipids and are thought to play a role in plant defense strategies against pathogens. In plant defense systems, oxylipins generated by the lipoxygenase pathway are important actors. To date, it is not known whether plants also use endogeneous oxylipins derived from NAEs in their defense reactions. We tested whether members of the NAE class can be converted by enzymes constituting this pathway, such as (soybean) lipoxygenase-1, (alfalfa) hydroperoxide lyase and (flax seed) allene oxide synthase. We found that both alpha-N-linolenoylethanolamine and gamma-N-linolenoylethanolamine (18:3), as well as alpha-N-linolenoylamine and gamma-N-linolenoylamine were converted into their (13S)-hydroperoxide derivatives by lipoxygenase. Interestingly, only the hydroperoxides of alpha-N-linolenoyl(ethanol)amines and their linoleic acid analogs (18:2) were suitable substrates for hydroperoxide lyase. Hexanal and (3Z)-hexenal were identified as volatile products of the 18:2 and 18:3 fatty acid (ethanol)amides, respectively. 12-Oxo-N-(9Z)-dodecenoyl(ethanol)amine was the nonvolatile hydrolysis product. Kinetic studies with lipoxygenase and hydroperoxide lyase revealed that the fatty acid ethanolamides were converted as readily or even better than the corresponding free fatty acids. Allene oxide synthase utilized all substrates, but was most active on (13S)-hydroperoxy-alpha-N-linolenoylethanolamine and the (13S)-hydroperoxide of linoleic acid and its ethanolamine derivative. alpha-Ketols and gamma-ketols were characterized as products. In addition, cyclized products, i.e. 12-oxo-N-phytodienoylamines, derived from (13S)-hydroperoxy-alpha-N-linolenoylamines were found. The results presented here show that, in principle, hydroperoxide NAEs can be formed in plants and subsequently converted into novel phytooxylipins.  相似文献   

4.
Activation of the "lipoxygenase pathway" in plants gives rise to a series of products derived from fatty acids. Analysis by gas chromatography-mass spectroscopy of volatile products produced by Phaseolus vulgaris (L.) cv Red Mexican leaves during a hypersensitive resistance response (HR) to the plant pathogenic bacterium Pseudomonas syringae pv phaseolicola showed evolution of several lipid-derived volatiles, including cis-3-hexenol and trans-2-hexenal, which arise from the 13-hydroperoxide of linolenic acid. These compounds were not produced in detectable amounts by buffer-inoculated leaves, nor did they evolve to such a high degree during comparable stages of the susceptible response. The absence of trans-2,cis-6-nonadienal, a product expected from 9-hydroperoxide of linolenic acid, suggests that lipid peroxidation during the HR proceeded primarily enzymically via bean lipoxygenase, which produces the 13-hydroperoxide, and not via autoxidative processes. The effects of trans-2-hexenal, cis-3-hexenol, and traumatic acid on P.s pv phaseolicola were investigaed. trans-2-Hexenal appeared to be highly bactericidal at low concentrations, whereas cis-3-hexenol was bactericidal only at much higher concentrations. Traumatic acid appeared to have no effect on P.s. pv. phaseolicola at the concentrations tested. These results demonstrate that during plant defense responses against microbial attack, several lipid-derived compounds are produced by the plant, some of which possess antimicrobial activity and conceivably are involved in plant disease resistance. The time of production of these substances, in amounts that would be expected to be antibacterial in vitro, correlated with a slowing down of the growth rate of bacteria in the leaves and was seen at a time before the accumulation of isoflavonoid phytoalexins in the host.  相似文献   

5.
Guanylate cyclase activity in rat lung supernatant fractions is stimulated 3-4 fold by aerobic incubation at 30 degrees C for approx. 30 min ('O2-dependent activation'). This stimulation was blocked by 20 microM-eicosa-5,8,11,14-tetraynoic acid (ETYA), an inhibitor of lipoxygenase and cyclo-oxygenase, but not by aspirin or indomethacin, which are cyclo-oxygenase inhibitors. The enzyme activator(s) is presumed to be the fatty acid hydroperoxide(s) formed by lipoxygenase. Removal of lipoxygenase from the supernatant fraction by chromatography on Amberlite XAD-4 also prevented activation, which was restored by the addition of soya-bean lipoxygenase. Bovine serum albumin prevented O2-dependent activation or activation by soya-bean lipoxygenase, through its ability to bind the unsaturated fatty acid substrate of lipoxygenase. The lipoxygenase in the supernatant fraction is inhibited by endogenous glutathione peroxidase plus reduced glutathione (GSH); removal of GSH de-inhibits lipoxygenase and activates guanylate cyclase. This was effected by autoxidation, by cumene hydroperoxide (with GSH peroxidase) and by titration with N-ethylmaleimide (NEM). Activation by NEM was inhibited by serum albumin or ETYA, as was activation by low concentrations (less than 50 microM) of cumene hydroperoxide. Activation by higher concentrations was not so inhibited; therefore, cumene hydroperoxide can also activate by a direct effect on guanylate cyclase. A hypothesis for physiological activation is proposed.  相似文献   

6.
Higher plants are generally unable to synthesize arachidonic acid, and thus, do neither form prostaglandins nor C20-isoprostanes. Instead, plants utilize linolenic acid for the synthesis of prostaglandin-like compounds of the jasmonate type via the lipoxygenase/allene oxide synthase pathway and C18-isoprostanoids, termed phytoprostanes, via a nonenzymatic, free radical catalyzed pathway analogous to the isoprostane pathway in animals. Both pathways are constitutively present in many if not all plants. Formation of jasmonates can be triggered by specific stimuli interacting with membrane receptors while phytoprostane synthesis can be induced by ROS and heavy metals. Jasmonates are established plant signal compounds that induce defense responses including accumulation of antimicrobial secondary metabolites (phytoalexins). Preliminary data indicates that phytoprostanes also induce phytoalexins in a variety of plant species suggesting a possible function of phytoprostanes as mediators of defense reactions in response to oxidative stress in plants.  相似文献   

7.
8.
The lipoxygenase pathway is responsible for the production of oxylipins, which are important compounds for plant defence responses. Jasmonic acid, the final product of the allene oxide synthase/allene oxide cyclase branch of the pathway, regulates wound-induced gene expression. In contrast, C6 aliphatic aldehydes produced via an alternative branch catalysed by hydroperoxide lyase, are themselves toxic to pests and pathogens. Current evidence on the subcellular localization of the lipoxygenase pathway is conflicting, and the regulation of metabolic channelling between the two branches of the pathway is largely unknown. It is shown here that while a 13-lipoxygenase (LOX H3), allene oxide synthase and allene oxide cyclase proteins accumulate upon wounding in potato, a second 13-lipoxygenase (LOX H1) and hydroperoxide lyase are present at constant levels in both non-wounded and wounded tissues. Wound-induced accumulation of the jasmonic acid biosynthetic enzymes may thus commit the lipoxygenase pathway to jasmonic acid production in damaged plants. It is shown that all enzymes of the lipoxygenase pathway differentially localize within chloroplasts, and are largely found associated to thylakoid membranes. This differential localization is consistently observed using confocal microscopy of GFP-tagged proteins, chloroplast fractionation, and western blotting, and immunodetection by electron microscopy. While LOX H1 and LOX H3 are localized both in stroma and thylakoids, both allene oxide synthase and hydroperoxide lyase protein localize almost exclusively to thylakoids and are strongly bound to membranes. Allene oxide cyclase is weakly associated with the thylakoid membrane and is also detected in the stroma. Moreover, allene oxide synthase and hydroperoxide lyase are differentially distributed in thylakoids, with hydroperoxide lyase localized almost exclusively to the stromal part, thus closely resembling the localization pattern of LOX H1. It is suggested that, in addition to their differential expression pattern, this segregation underlies the regulation of metabolic fluxes through the alternative branches of the lipoxygenase pathway.  相似文献   

9.
Plants are able to respond to herbivore damage with de novo biosynthesis of an herbivore-characteristic blend of volatiles. The signal transduction initiating volatile biosynthesis may involve the activation of the octadecanoid pathway, as exemplified by the transient increase of endogenous jasmonic acid (JA) in leaves of lima bean (Phaseolus lunatus) after treatment with the macromolecular elicitor cellulysin. Within this pathway lima bean possesses at least two different biologically active signals that trigger different biosynthetic activities. Early intermediates of the pathway, especially 12-oxo-phytodienoic acid (PDA), are able to induce the biosynthesis of the diterpenoid-derived 4,8, 12-trimethyltrideca-1,3,7,11-tetraene. High concentrations of PDA result in more complex patterns of additional volatiles. JA, the last compound in the sequence, lacks the ability to induce diterpenoid-derived compounds, but is highly effective at triggering the biosynthesis of other volatiles. The phytotoxin coronatine and amino acid conjugates of linolenic acid (e.g. linolenoyl-L-glutamine) mimic the action of PDA, but coronatine does not increase the level of endogenous JA. The structural analog of coronatine, the isoleucine conjugate of 1-oxo-indanoyl-4-carboxylic acid, effectively mimics the action of JA, but does not increase the level of endogenous JA. The differential induction of volatiles resembles previous findings on signal transduction in mechanically stimulated tendrils of Bryonia dioica.  相似文献   

10.
The effect of atmospheric methyl jasmonate on the oxylipin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylipin pathway. Arabidopsis was the least and cucumber the most sensitive to methyl jasmonate. Methyl jasmonate induced the accumulation of lipoxygenase protein and a corresponding increase in extractable lipoxygenase activity. Atmospheric methyl jasmonate additionally induced hydroperoxide lyase activity and the enhanced production of several volatile six-carbon products. It is interesting that lipid hydroperoxidase activity, which is a measure of hydroperoxide lyase plus allene oxide synthase plus possibly other lipid hydroperoxide-metabolizing activities, was not changed by methyl jasmonate treatment. Methyl jasmonate selectively altered the activity of certain enzymes of the oxylipin pathway (lipoxygenase and hydroperoxide lyase) and increased the potential of leaves for greatly enhanced six-carbon-volatile production.  相似文献   

11.
Oxylipin profiling in pathogen-infected potato leaves   总被引:14,自引:0,他引:14  
Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.  相似文献   

12.
The homogenate of tea seed cotyledons contained an inhibitor for C6-aldehyde formation from linoleic acid and linolenic acid by isolated tea chloroplasts. Seed homogenates of other plants, such as soybean, kidney bean, cucumber, Japanese radish and rice, also contained the inhibitor for C6-aldehyde formation. The inhibitor from tea seed and cucumber seed inhibited C6-aldehyde formation by the homogenate of cucumber hypocotyl. Hydroperoxides of linoleic acid detected were reduced when the tea seed inhibitor was added to the reaction mixture, but the enzyme activities of lipoxygenase and hydroperoxide lyase were not inhibited. This means that the inhibitor is a decomposer of fatty acid hydroperoxides as an intermediate of C6-aldehyde formation. The tea seed inhibitor was formed during the seed ripening and it was stable during the seed germination. These findings obtained here suggest that the inhibitor is widely present in plant seeds and inhibits C6-aldehyde formation by a variety of plant tissues.  相似文献   

13.
A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13 S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 micromol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by beta-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.  相似文献   

14.
Lipoxygenases in plants have been implicated in the activation of defense responses against injury/infection. Pathogen-derived polyunsaturated fatty acids, such as arachidonic acid, eicosapentaenoic acid and their metabolites have been shown to elicit defense responses against pathogen infection in plants. However, not much is known about the role of host-derived fatty acids and their metabolites in plant defense responses. In this study, isolation and characterisation of endogenous lipoxygenase metabolites formed in potato tubers in response to injury/infection was undertaken. While 9-hydroperoxyoctadecadienoic acid (9-HPODE), derived from octadecdienoic acid (linoleic acid) is the major lipoxygenase product formed in control potato tubers, 9-hydroperoxyoctadecatrienoic acid (9-HPOTrE), derived from octadecatrienoic acid (alpha-linolenic acid) is the major lipoxygenase product formed in potato tubers in response to injury or infection with Rhizoctonia bataticola. As a result, the relative ratio of 9-HPODE to 9-HPOTrE showed a shift from 4:1 in control to 1:2 and 1:4.5 in injured and infected potato tubers respectively. From this study, it is proposed that lipoxygenase metabolites of octadecadienoic acid may be involved in physiological responses under control conditions, while octadecatrienoic acid metabolites are mediating the defense responses. This forms the first report on the differential formation of endogenous lipoxygenase products in potato tubers under control and stress conditions.  相似文献   

15.
16.
Mung bean was investigated as a novel source of lipoxygenase in the natural production of the green-note aroma compound hexanal. Lipoxygenase extracted from mung bean catalyzed the oxidative reaction of linoleic acid, after which the intermediate hydroperoxide compound was split via green bell pepper hydroperoxide lyase to produce hexanal. In comparison to soybean lipoxygenase, mung bean lipoxygenase was found to be a good substitute as it produced 15.4 mM (76% yield) hexanal while soybean gave 60% yield. The mung bean pH profile comprised a wide peak (optimum pH 6.5) representing lipoxygenase-2 and lipoxygenase-3 isozymes, whereas two narrower peaks representing lipoxygenase-1 and lipoxygenase-2/3 isozymes were observed for soybean (optimum pH 10). Extraction at pH 4.5 was preferred, at which specific lipoxygenase activity was also the highest.  相似文献   

17.
Qi J  Zhou G  Yang L  Erb M  Lu Y  Sun X  Cheng J  Lou Y 《Plant physiology》2011,157(4):1987-1999
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.  相似文献   

18.
Green notes are substances that characterize the aroma of freshly cut grass, cucumbers, green apples, and foliage. In plants, they are synthesized by conversion of linolenic or linoleic acid via the enzymes lipoxygenase (LOX) and hydroperoxide lyase (HPL) to short-chained aldehydes. Current processes for production of natural green notes rely on plant homogenates as enzyme sources but are limited by low enzyme concentration and low specificity. In an alternative approach, soybean LOX2 and watermelon HPL were overexpressed in Saccharomyces cerevisiae. After optimization of the expression constructs, a yeast strain coexpressing LOX and HPL was applied in whole cell biotransformation experiments. Whereas addition of linolenic acid to growing cultures of this strain yielded no products, we were able to identify high green note concentrations when resting cells were used. The primary biotransformation product was 3(Z)-hexenal, a small amount of which isomerized to 2(E)-hexenal. Furthermore, both aldehydes were reduced to the corresponding green note alcohols by endogenous yeast alcohol dehydrogenase to some extent. As the cosolvent ethanol was the source of reducing equivalents for green note alcohol formation, the hexenal/hexenol ratio could be influenced by the use of alternative cosolvents. Further investigations to identify the underlying mechanism of the rather low biocatalyst stability revealed a high toxicity of linolenic acid to yeast cells. The whole cell catalyst containing LOX and HPL enzyme activity described here can be a promising approach towards a highly efficient microbial green note synthesis process.  相似文献   

19.
1. Etiolated seedlings of alfalfa and cucumber evolved n-hexanal from linoleic acid and cis-3-hexenal and trans-2-hexenal from linolenic acid when they were homogenized.

2. The activities for n-hexanal formation from linoleic acid, lipoxygenase and hydro-peroxide lyase were maximum in dry seeds and 1~2 day-old etiolated seedlings of alfalfa, and in 6~7 day-old etiolated seedlings of cucumber.

3. n-Hexanal was produced from linoleic acid and 13-hydroperoxylinoleic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. cis-3-Hexenal and trans-2-hexenal were produced from linolenic acid and 13-hydroperoxylinolenic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. But these extracts, particulariy cucumber one, showed a high isomerizing activity from cis-3-hexenal to trans-2-hexenal.

4. When the C8-aldehydes were produced from linoleic acid and linolenic acid by the crude extracts, formation of hydroperoxides of these C18-fatty acids was observed.

5. When 9-hydroperoxylinoleic acid was used as a substrate, trans-2-nonenal was produced by the cucumber homogenate but not by the alfalfa homogenate.

6. As the enzymes concerned with C6-aldehyde formation, lipoxygenase was partially purified from alfalfa and cucumber seedlings and hydroperoxide lyase, from cucumber seedlings. Lipoxygenase was found in a soluble fraction, but hydroperoxide lyase was in a membrane bound form. Alfalfa lipoxygenase catalyzed formation of 9- and 13-hydroperoxylinoleic acid (35: 65) from linoleic acid and cucumber one, mainly 13-hydroperoxylinoleic acid formation. Alfalfa hydroperoxide lyase catalyzed n-hexanal formation from 13-hydroperoxylinoleic acid, but cucumber one catalyzed formation of n-hexanal and trans-2-nonenal from 13- and 9-hydroperoxylinoleic acid, respectively.

7. From the above results, the biosynthetic pathway for C6-aldehyde formation in etiolated alfalfa and cucumber seedlings is established that C6-aldehydes (n-hexanal, cis-3-hexenal and trans-2-hexenal) are produced from linoleic acid and linolenic acid via their 13-hydroperoxides by lipoxygenase and hydroperoxide lyase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号