首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel short-chain (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) from Candida parapsilosis exhibits coenzyme specificity for NADPH over NADH. It catalyzes an anti-Prelog type reaction to reduce 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. The coding gene was overexpressed in Escherichia coli and the purified protein was crystallized. The crystal structure of the apo-form was solved to 2.7 Å resolution. This protein forms a homo-tetramer with a broken 2-2-2 symmetry. The overall fold of each SCR subunit is similar to that of the known structures of other homologous alcohol dehydrogenases, although the latter usually form tetramers with perfect 2-2-2 symmetries. Additionally, in the apo-SCR structure, the entrance of the NADPH pocket is blocked by a surface loop. In order to understand the structure–function relationship of SCR, we carried out a number of mutagenesis–enzymatic analyses based on the new structural information. First, mutations of the putative catalytic Ser-Tyr-Lys triad confirmed their functional role. Second, truncation of an N-terminal 31-residue peptide indicated its role in oligomerization, but not in catalytic activity. Similarly, a V270D point mutation rendered the SCR as a dimer, rather than a tetramer, without affecting the enzymatic activity. Moreover, the S67D/H68D double-point mutation inside the coenzyme-binding pocket resulted in a nearly 10-fold increase and a 20-fold decrease in the kcat/KM value when NADH and NADPH were used as cofactors, respectively, with kcat remaining essentially the same. This latter result provides a new example of a protein engineering approach to modify the coenzyme specificity in SCR and short-chain dehydrogenases/reductases in general.  相似文献   

2.
In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.  相似文献   

3.
The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.  相似文献   

4.
Steroleosin, a sterol-binding dehydrogenase in seed oil bodies   总被引:8,自引:0,他引:8  
Lin LJ  Tai SS  Peng CC  Tzen JT 《Plant physiology》2002,128(4):1200-1211
Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel beta-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols.  相似文献   

5.
Three-dimensional structures of sevenshort-chain dehydrogenases/reductases show that theseenzymes share common structural features. Sequencealignment studies of Drosophila alcoholdehydrogenase (DADH), with an unknown 3D-structure, and fourshort-chain dehydrogenases/reductases with known X-raystructures suggest that DADH shares the same structuralfeatures. However, the substrate binding regions, which are located in the C-terminal region of theseenzymes, share little sequence homology, because of thewide variety of substrates used. X-ray structures ofshort-chain dehydrogenases/reductases indicate that conformational changes occur in a loop, inthe C-terminal region, upon substrate binding. Thissubstrate-binding loop is located between a strand anda helix and may contain one or two small helices. Secondary structure predictions and modelingstudies of this substrate-binding loop in DADH predictthat the two helices may also be present in this enzyme.The naturally occurring variants of Drosophila melanogaster alleloenzymes ADH-S and ADH-Fdiffer in a replacement of threonine by lysine atposition 192, which is located at a central position inthe substrate-binding loop. The positive charge oflysine may move significantly on substrate binding,resulting in a direct charge interaction withNAD+ in the enzyme-substrate complex,explaining a very strong influence of pH on the bindingof ADH-S for the NAD+ analogue Cibacron Blue. Thisindicates that the ADH S/F polymorphism has a directinfluence on the catalytic properties of the enzyme.  相似文献   

6.
D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida belongs to the family of short-chain dehydrogenases/reductases. We have determined X-ray structures of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida, which was recombinantly expressed in Escherichia coli, in three different crystal forms to resolutions between 1.9 and 2.1 A. The so-called substrate-binding loop (residues 187-210) was partially disordered in several subunits, in both the presence and absence of NAD(+). However, in two subunits, this loop was completely defined in an open conformation in the apoenzyme and in a closed conformation in the complex structure with NAD(+). Structural comparisons indicated that the loop moves as a rigid body by about 46 degrees . However, the two small alpha-helices (alphaFG1 and alphaFG2) of the loop also re-orientated slightly during the conformational change. Probably, the interactions of Val185, Thr187 and Leu189 with the cosubstrate induced the conformational change. A model of the binding mode of the substrate D-3-hydroxybutyrate indicated that the loop in the closed conformation, as a result of NAD(+) binding, is positioned competent for catalysis. Gln193 is the only residue of the substrate-binding loop that interacts directly with the substrate. A translation, libration and screw (TLS) analysis of the rigid body movement of the loop in the crystal showed significant librational displacements, describing the coordinated movement of the substrate-binding loop in the crystal. NAD(+) binding increased the flexibility of the substrate-binding loop and shifted the equilibrium between the open and closed forms towards the closed form. The finding that all NAD(+) -bound subunits are present in the closed form and all NAD(+) -free subunits in the open form indicates that the loop closure is induced by cosubstrate binding alone. This mechanism may contribute to the sequential binding of cosubstrate followed by substrate.  相似文献   

7.
(R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.  相似文献   

8.
The crystal structure of Saccharomyces cerevisiae ScAdh6p has been solved using the anomalous signal from the two zinc atoms found per subunit, and it constitutes the first structure determined from a member of the cinnamyl alcohol dehydrogenase family. ScAdh6p subunits exhibit the general fold of the medium-chain dehydrogenases/reductases (MDR) but with distinct specific characteristics. In the three crystal structures solved (two trigonal and one monoclinic), ScAdh6p molecules appear to be structural heterodimers composed of one subunit in the apo and the second subunit in the holo conformation. Between the two conformations, the relative disposition of domains remains unchanged, while two loops, Cys250-Asn260 and Ile277-Lys292, experience large movements. The apo-apo structure is disfavoured because of steric impairment involving the loop Ile277-Lys292, while in the holo-holo conformation some of the hydrogen bonds between subunits would break apart. These suggest that the first NADPH molecule would bind to the enzyme much more tightly than the second. In addition, fluorimetric analysis of NADPH binding demonstrates that only one cofactor molecule binds per dimer. Therefore, ScAdh6p appears to function according to a half-of-the-sites reactivity mechanism, resulting from a pre-existing (prior to cofactor binding) tendency for the structural asymmetry in the dimer. The specificity of ScAdh6p towards NADPH is mainly due to the tripod-like interactions of the terminal phosphate group with Ser210, Arg211 and Lys215. The size and the shape of the substrate-binding pocket correlate well with the substrate specificity of ScAdh6p towards cinnamaldehyde and other aromatic compounds. The structural relationships of ScAdh6p with other MDR structures are analysed.  相似文献   

9.
Fumarate reductases and succinate dehydrogenases play central roles in the metabolism of eukaryotic and prokaryotic cells. A recent medium resolution structure of the Escherichia coli fumarate reductase (Frd) has revealed the overall organization of the membrane-bound complex. Here we present the first high resolution X-ray crystal structure of a water-soluble bacterial fumarate reductase in an open conformation. This structure reveals a mobile domain that modulates substrate access to the active site and provides new insights into the mechanism of this widespread and important family of FAD-containing respiratory proteins.  相似文献   

10.
Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.  相似文献   

11.
The crystal structure of the apo-form of an R-specific alcohol dehydrogenase from Lactobacillus brevis (LB-RADH) was solved and refined to 1.8A resolution. LB-RADH is a member of the short-chain dehydrogenase/reductase (SDR) enyzme superfamily. It is a homotetramer with 251 amino acid residues per subunit and uses NADP(H) as co-enzyme. NADPH and the substrate acetophenone were modelled into the active site. The enantiospecificity of the enzyme can be explained on the basis of the resulting hypothetical ternary complex. In contrast to most other SDR enzymes, the catalytic activity of LB-RADH depends strongly on the binding of Mg(2+). Mg(2+) removal by EDTA inactivates the enzyme completely. In the crystal structure, the Mg(2+)-binding site is well defined. The ion has a perfect octahedral coordination sphere and occupies a special position concerning crystallographic and molecular point symmetry, meaning that each RADH tetramer contains two magnesium ions. The magnesium ion is no direct catalytic cofactor. However, it is structurally coupled to the putative C-terminal hinge of the substrate-binding loop and, via an extended hydrogen bonding network, to some side-chains forming the substrate binding region. Therefore, the presented structure of apo-RADH provides plausible explanations for the metal dependence of the enzyme.  相似文献   

12.
S-1360, a 1,3-diketone derivative, was the first HIV integrase inhibitor to enter human trials. Clinical data suggested involvement of non-cytochrome P450 clearance pathways, including reduction and glucuronidation. Reduction of S-1360 generates a key metabolite in humans, designated HP1, and constitutes a major clearance pathway. For characterization of subcellular location and cofactor dependence of HP1 formation, [(14)C]-S-1360 was incubated with commercially available pooled human liver fractions, including microsomes, cytosol, and mitochondria, followed by HPLC analysis with radiochemical detection. Incubations were performed in the presence and absence of the cofactors NADH or NADPH. Results showed that the enzyme system responsible for generation of HP1 in vitro is cytosolic and NADPH-dependent, implicating aldo-keto reductases (AKRs) and/or short-chain dehydrogenases/reductases (SDRs). A validated LC/MS/MS method was developed for investigating the reduction of S-1360 in detail. The reduction reaction exhibited sigmoidal kinetics with a K(m,app) of 2 microM and a Hill coefficient of 2. The ratio of V(max)/K(m) was approximately 1 ml/(min mg cytosolic protein). The S-1360 kinetic data were consistent with positive cooperativity and a single enzyme system. The relative contributions of AKRs and SDRs were examined through the use of chemical inhibitors. For these experiments, non-radiolabeled S-1360 was incubated with pooled human liver cytosol and NADPH in the presence of inhibitors, followed by quantitation of HP1 by LC/MS/MS. Quercetin and menadione produced approximately 30% inhibition at a concentration of 100 microM. Enzymes sensitive to these inhibitors include the carbonyl reductases (CRs), a subset of the SDR enzyme family predominantly located in the cytosol. Flufenamic acid and phenolphthalein were the most potent inhibitors, with > 67% inhibition at a concentration of 20 microM, implicating the AKR enzyme family. The cofactor dependence, subcellular location, and chemical inhibitor results implicated the aldo-keto reductase family of enzymes as the most likely pathway for generation of the major metabolite HP1 from S-1360.  相似文献   

13.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

14.
Cao H  Mi L  Ye Q  Zang G  Yan M  Wang Y  Zhang Y  Li X  Xu L  Xiong J  Ouyang P  Ying H 《Bioresource technology》2011,102(2):1733-1739
A novel NADH-dependent dehydrogenases/reductases (SDRs) superfamily reductase (PsCRII) was isolated from Pichia stipitis. It produced ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE] in greater than 99% enantiomeric excess. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by Q-Sepharose chromatography. Compared to similar known reductases producing (S)-CHBE, PsCR II was more suitable for production since the purified PsCRII preferred the inexpensive cofactor NADH to NADPH as the electron donor. Furthermore, the Km of PsCRII for ethyl 4-chloro-3-oxobutanoate (COBE) was 3.3 mM, and the corresponding Vmax was 224 μmol/mg protein/min. The catalytic efficiency is the highest value ever reported for NADH-dependent reductases from yeasts that produce CHBE with high enantioselectivity. In addition, this enzyme exhibited broad substrate specificity for several β-keto esters using NADH as the coenzyme. The properties of PsCRII with those of other carbonyl reductases from yeasts were also compared in this study.  相似文献   

15.
We report the crystal structure of the FAD/NADPH-binding domain (FAD domain) of the biotechnologically important Bacillus megaterium flavocytochrome P450 BM3, the last domain of the enzyme to be structurally resolved. The structure was solved in both the absence and presence of the ligand NADP(+), identifying important protein interactions with the NADPH 2'-phosphate that helps to dictate specificity for NADPH over NADH, and involving residues Tyr974, Arg966, Lys972 and Ser965. The Trp1046 side chain shields the FAD isoalloxazine ring from NADPH, and motion of this residue is required to enable NADPH-dependent FAD reduction. Multiple binding interactions stabilize the FAD cofactor, including aromatic stacking with the adenine group from the side chains of Tyr860 and Trp854, and several interactions with FAD pyrophosphate oxygens, including bonding to tyrosines 828, 829 and 860. Mutagenesis of C773 and C999 to alanine was required for successful crystallization, with C773A predicted to disfavour intramolecular and intermolecular disulfide bonding. Multiangle laser light scattering analysis showed wild-type FAD domain to be near-exclusively dimeric, with dimer disruption achieved on treatment with the reducing agent dithiothreitol. By contrast, light scattering showed that the C773A/C999A FAD domain was monomeric. The C773A/C999A FAD domain structure confirms that Ala773 is surface exposed and in close proximity to Cys810, with this region of the enzyme's connecting domain (that links the FAD domain to the FMN-binding domain in P450?BM3) located at a crystal contact interface between FAD domains. The FAD domain crystal structure enables molecular modelling of its interactions with its cognate FMN (flavodoxin-like) domain within the BM3 reductase module.  相似文献   

16.
The structure of the rat liver aflatoxin dialdehyde reductase (AKR7A1) has been solved to 1.38-A resolution. Although it shares a similar alpha/beta-barrel structure with other members of the aldo-keto reductase superfamily, AKR7A1 is the first dimeric member to be crystallized. The crystal structure also reveals details of the ternary complex as one subunit of the dimer contains NADP(+) and the inhibitor citrate. Although the underlying catalytic mechanism appears similar to other aldo-keto reductases, the substrate-binding pocket contains several charged amino acids (Arg-231 and Arg-327) that distinguish it from previously characterized aldo-keto reductases with respect to size and charge. These differences account for the substrate specificity for 4-carbon acid-aldehydes such as succinic semialdehyde and 2-carboxybenzaldehyde as well as for the idiosyncratic substrate aflatoxin B(1) dialdehyde of this subfamily of enzymes. Structural differences between the AKR7A1 ternary complex and apoenzyme reveal a significant hinged movement of the enzyme involving not only the loops of the structure but also parts of the alpha/beta-barrel most intimately involved in cofactor binding.  相似文献   

17.
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.  相似文献   

18.
The crystal structure of a major oxygen-insensitive nitroreductase (NfsA) from Escherichia coli has been solved by the molecular replacement method at 1.7-A resolution. This enzyme is a homodimeric flavoprotein with one FMN cofactor per monomer and catalyzes reduction of nitrocompounds using NADPH. The structure exhibits an alpha + beta-fold, and is comprised of a central domain and an excursion domain. The overall structure of NfsA is similar to the NADPH-dependent flavin reductase of Vibrio harveyi, despite definite difference in the spatial arrangement of residues around the putative substrate-binding site. On the basis of the crystal structure of NfsA and its alignment with the V. harveyi flavin reductase and the NADPH-dependent nitro/flavin reductase of Bacillus subtilis, residues Arg(203) and Arg(208) of the loop region between helices I and J in the vicinity of the catalytic center FMN is predicted as a determinant for NADPH binding. The R203A mutant results in a 33-fold increase in the K(m) value for NADPH indicating that the side chain of Arg(203) plays a key role in binding NADPH possibly to interact with the 2'-phosphate group.  相似文献   

19.
The mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD) is the unique known member of the aldo-keto reductase (AKR) superfamily able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epi-testosterone (epi-T), the 17alpha-epimer of testosterone. Structural and mutagenic studies had already identified one of the residues delineating the steroid-binding cavity, A24, as the major molecular determinant for the stereospecificity of m17alpha-HSD. We report here a ternary complex crystal structure (m17alpha-HSD:NADP(+):epi-T) determined at 1.85 A resolution that confirms this and reveals a unique steroid-binding mode for an AKR enzyme. Indeed, in addition to the interactions found in all other AKRs (van der Waals contacts stabilizing the core of the steroid and the hydrogen bonds established at the catalytic site by the Y55 and H117 residues with the oxygen atom of the ketone group to be reduced), m17alpha-HSD establishes with the other extremity of the steroid nucleus an additional interaction involving K31. By combining direct mutagenesis and kinetic studies, we found that the elimination of this hydrogen bond did not affect the affinity of the enzyme for its steroid substrate but led to a slight but significant increase of its catalytic efficiency (k(cat)/K(m)), suggesting a role for K31 in the release of the steroidal product at the end of the reaction. This previously unobserved steroid-binding mode for an AKR is similar to that adopted by other steroid-binding proteins, the hydroxysteroid dehydrogenases of the short-chain dehydrogenases/reductases (SDR) family and the steroid hormone nuclear receptors. Mutagenesis and structural studies made on the human type 3 3alpha-HSD, a closely related enzyme that shares 73% amino acids identity with the m17alpha-HSD, also revealed that the residue at position 24 of these two enzymes directly affects the binding and/or the release of NADPH, in addition to its role in their 17alpha/17beta stereospecificity.  相似文献   

20.
Dai J  Li P  Ji Ch  Feng C  Gui M  Sun Y  Zhang J  Zhu J  Dou Ch  Gu Sh 《Molekuliarnaia biologiia》2005,39(5):799-805
The short-chain dehydrogenases/reductases (SDRs) play important roles in body's metabolism. We cloned a novel mouse SDR cDNA which encodes a deduced HSD-like protein with a conserved SDR domain and a SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号