首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct analysis of both the position and abundance of 18O in d-glucose was accomplished by mass spectrometry of the pentaacetyl derivative. Synthetically prepared [1—18O]-, [2—18O]-, [3—18O]- and [6—18O]pentaacetylhexoses were prepared and used as standards to aid in the elucidation of fragmentation patterns. Ions were identified which contained specific oxygen atoms of glucose, permitting the measurement of 18O incorporated into these positions. This technique was used in the analysis of [4—18O] glucose prepared enzymatically.  相似文献   

2.
A study was carried out to determine the effect of trypsin on glucose transport into brain cells. Two suspensions of dissociated cells were prepared from the two brain hemispheres of adult rats—one using only mechanical means to dissociate the cells and one using trypsin. The use of trypsin for preparation of dissociated brain cells caused a marked reduction in the rate of transport of [1,2-3H]-2-deoxy-d-glucose compared to uptakes of this glucose analog by cells prepared without trypsin. Responses of the two cell preparations to inhibitors of glucose transport (cytochalasin B and phloretin) were similar. Rates of oxidation of [6-14C]glucose to14CO2 by trypsin-treated cells were nearly double those in cells prepared without trypsin. Electron microscopic examination of the two preparations revealed much less preservation of structural integrity if trypsin was used to prepare the cells. The findings suggest that trypsin alters cell structure and affects receptor-regulated events in brain cells.  相似文献   

3.
1. Superovulated rat ovary slices from rats treated with 20μg. of luteininzing hormone/100g. body wt. 2hr. before death and from control animals have been incubated in vitro. Output of Δ4-3-oxo steroids (0·2μmole/g. wet wt./hr. in control tissue) was linear for 4hr., and was increased by approx. 70% in slices from luteinizing hormone-treated rats. Rate of oxygen consumption (90·0±4·6μmoles/g. wet wt./hr.) was linear for 3hr. and unaltered by luteinizing hormone treatment or addition of glucose (1mg./ml.) to the medium. 2. In slices from control animals, steady-state rate of glucose uptake was 78·0±2·9μg. atoms of carbon/g. wet wt./hr.; steady-state rates of lactate output, pyruvate output and incorporation of [U-14C]-glucose carbon atoms into carbon dioxide and total lipid extract were 60·7±0·9, 2·4±0·1, 18·0±1·1 and 0·7±0·1μg. atom of carbon/g. wet wt./hr. and accounted for 104·5±1·9% of the glucose uptake. In slices from luteinizing hormone-treated rats, glucose uptake and outputs of lactate, pyruvate and [14C]carbon dioxide were increased by approx. 25%, and 108·4±3·2% of the glucose uptake could be accounted for. 3. The total lipid extract was separated by thin-layer chromatography and saponification. Of the 14C incorporated into this fraction during incubation with [U-14C]glucose 97% was found in the fractions containing glyceride glycerol and less than 3% in the fractions containing sterols, steroids or fatty acids. Appreciable quantities of 14C were incorporated into these lipid fractions from [1-14C]acetate. 4. From a consideration of the tissue glycogen content, the specific activities of [14C]lactate and glucose 6-phosphate (C-1) derived from [1-14C]-, [6-14C]- and [U-14C]-glucose, and the ratio of [14C]carbon dioxide yields from [1-14C]glucose and [6-14C]glucose, it was concluded that there was no appreciable glycogenolysis or flow through the pentose phosphate cycle. 5. In ovary slices from both control and luteinizing hormone-treated animals, glucose in vitro raised the incorporation rate of 14C from [1-14C]acetate into sterols and steroids. Luteinizing hormone in vivo stimulated the incorporation rate in vitro but only in the presence of glucose. 6. In slices incubated in medium containing [3H]water, [14C]sorbitol and glucose (1mg./ml.), the total water space (865±7·1μl./g.) and the extracellular water space (581±22μl./g.) were unchanged by luteinizing hormone treatment in vivo but the glucose space was raised from 540±23·6μl./g. to 639±31·3μl./g. 7. Luteinizing hormone treatment was found to lower the tissue concentration of the hexose monophosphates and to increase the total activity of hexokinase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and possibly of phosphofructokinase. 8. The kinetic properties of a partially purified preparation of phosphofructokinase were found to be qualitatively similar to those from other mammalian tissues. 9. The results are discussed with reference to both the role of glucose metabolism in steroidogenesis and the mechanism by which luteinizing hormone increases the rate of glucose uptake.  相似文献   

4.
Boron is required for fiber growth and development in cotton ovules cultured in vitro. Incorporation of [14C]glucose by such fiber from supplied UDP-[14C]glucose into the hot alkali-insoluble fraction is rapid and linear for about 30 minutes. Incorporation of [14C]glucose from such substrate by fibers grown in boron-deficient ovule cultures is much less than in the case with fibers from ovules cultured with boron in the medium. Total products (alkali-soluble plus alkali-insoluble fractions) were also greater in fibers from ovules cultured with boron. The fraction insoluble in acetic-nitric reagent was a small part of the total glucans; however, in the boron-sufficient fibers, there was significantly more of this fraction than in fibers from boron-deficient ovule cultures. The hot water-soluble glucose polymers from the labeled fibers had a significant fraction of the total [14C]glucose incorporated from UDP-[14C]glucose. Both β-1,4- and β-1,3- water-soluble polymers were formed in the boron-sufficient fibers, whereas the same water-soluble fraction from the boron-deficient fibers was predominantly β-1,3-polymers. The incorporation of [14C]glucose from GDP-[14C]glucose by the fibers attached to the ovules was insignificant.  相似文献   

5.
Hyoscyamine is epoxidized to scopolamine via 6β-hydroxyhyoscyamine in several solanaceous plants. 6,7-Dehydrohyoscyamine has been proposed to be an intermediate in the conversion of 6β-hydroxyhyoscyamine to scopolamine on the basis of the observation that this unsaturated alkaloid is converted to scopolamine when fed to a Datura scion. To determine whether a dehydration step is involved in scopolamine biosynthesis, [6-18O]6β-hydroxyhyoscyamine was prepared from l-hyoscyamine and 18O2 using hyoscyamine 6β-hydroxylase obtained from root cultures of Hyoscyamus niger L. When [6-18O]6β-hydroxyhyoscyamine was fed to shoot cultures of Duboisia myoporoides R. BR., the labeled alkaloid was converted to scopolamine which retained 18O in the epoxide oxygen. It is concluded that 6β-hydroxyhyoscyamine is converted in vivo to scopolamine without a dehydration step.  相似文献   

6.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

7.
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.  相似文献   

8.
Previous 18O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [18O]ABA with the label incorporated in the 1′-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1′-4′-trans-ABA-diol (ABA-trans-diol) from 18O-labeled apple fruit tissue and measured the extent and position of 18O incorporation by tandem mass spectrometry. 18O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18O in the carbonyl of ABA-aldehyde can be the cause of loss of 18O from the side chain of [18O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABA → ABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-d-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed.  相似文献   

9.
Accurate estimation of in vivo turnover rates of collagen is complicated by amino acid reutilization. It was previously shown that the ideal, non-recycling tracer was [18O]hydroxyproline synthesized in vivo. The analytical method for measuring turnover rates with [18O]hydroxyproline must include analyte quantitation for pool size determination and isotope ratio measurement for determining levels of label incorporation. For ease of use and widest availability, a benchtop gas chromatograph—mass spectrometer in the electron-impact ionization mode was chosen. Here we present a versatile procedure for hydroxyproline derivatization that is well suited for routine, large-scale determination of analyte concentrations and relative levels of 18O incorporation.  相似文献   

10.
In this study, 2-[18F]fluoro-2-deoxy-d-glucose, ([18F]FDG) was used to radiolabel human granulocytes in vitro for possible clinical use by positron emission tomography (PET). Uptake of [18F]FDG was dependent on the amount of glucose in the labelling medium, e.g. when 1 × 107 granulocytes were incubated with [18F]FDG containing 15μg/mL glucose 80% of [18F]FDG was incorporated within 30 min, but in the presence of 1 mg/mL of glucose it was reduced to 2%. Increasing the cell concentration and activating the granulocytes with Streptococcus pneumoniae, opsonized zymosan or phorbol myristate acetate all increased the uptake of [18F]FDG. Retention of the [18F]FDG by the cells as [18F]FDG-6-phosphate was also dependent on the extracellular glucose concentration, 9% was released within 60 min in the absence of glucose, but 27% in the presence of 1 mg/mL glucose.  相似文献   

11.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into β-1, 3-glucans which contained a significant proportion of β-1, 6-glycosidic linkages. When GDP-[U-14C]-glucose was used as substrate only trace amounts of glucose were incorporated. Activity of β-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. β-Glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of β-1, 6-glycosidic linkages respectively. A marked decrease in the activity of β-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

12.
Two new phenylacetylene derivatives, 5-((4-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)phenyl)ethynyl)indoline 8 and 5-((4-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)phenyl)ethynyl)-1H-indole 14, targeting β-amyloid (Aβ) plaques have been prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [125I]IMPY (6-iodo-2-(4′-dimethylamino-)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (Ki = 4.0 and 1.5 nM for 8 and 14, respectively). Brain penetration of the corresponding radiofluorinated ligands, evaluated in the normal mice, showed good initial brain penetration (4.50 and 2.43% ID/g (injected dose/gram) for [18F]8 and [18F]14 at 2 min after injection) with moderate to low washout rates from the brain (1.71% ID/g at 2 h and 2.10% ID/g at 3 h, respectively). Autoradiography and homogenate binding studies demonstrated the high specific binding of [18F]14 to the Aβ plaques; however, [18F]8 showed low specific binding. These preliminary results identified that indolylphenylacetylene, 14, may be a good lead for further structural modification to develop a useful Aβ plaque imaging agent.  相似文献   

13.
Purpose[18F]Fluoromethylcholine ([18F]FMCH) is a radiopharmaceutical used in positron emission tomography (PET) imaging for the study of prostate, breast, and brain tumors. It is usually synthesized in cyclotron facilities where 18F is produced by proton irradiation of [18O]H2O through 18O(p,n)18F reaction. Due to the activation of target materials, the bombardment causes unwanted radionuclidic impurities in [18O]H2O, that need to be removed during the radiopharmaceutical synthesis. Thus, the aim of this study is to quantify the radionuclide impurities in the 18F production process and in the synthesized [18F]FMCH, demonstrating the radionuclidic purity of this radiopharmaceutical.MethodsLong-lived radionuclide impurities were experimentally assessed using high-resolution gamma and liquid scintillation spectrometries, while short-lived impurities were monitored analyzing the decay curve of the irradiated [18O]H2O with an activity calibrator. As spectrometric radionuclide library, a Geant4 Monte Carlo simulation of the 18F-target assembly was previously performed.Results3H, 52,54Mn, 56,57,58Co, 95m,96Tc, 109Cd, and 184Re were found in the irradiated [18O]H2O, but no radionuclide was found in the non-irradiated [18O]H2O neither in the final [18F]FMCH solution with an activity concentration greater than the minimum detectable activity concentration. A total impurity activity <6.2 kBq was measured in the irradiated [18O]H2O, whereas a [18F]FMCH radionuclide purity >99.9999998% was estimated. Finally, the decay curve of the irradiated [18O]H2O revealed a very low maximum of 13N activity (<0.03% of 18F) even immediately after the end of bombardment.ConclusionsThis study demonstrated the radionuclidic purity of [18F]FMCH according to the EU Pharmacopeia.  相似文献   

14.
Molecular weights and metabolism of rat brain proteins   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Rats were injected with [U-14C]glucose and after various intervals extracts of whole brain proteins (and in some cases proteins from liver, blood and heart) were prepared by high-speed centrifugation of homogenates in 0.9% sodium chloride or 0.5% sodium deoxycholate. 2. The extracts were subjected to gel filtration on columns of Sephadex G-200 equilibrated with 0.9% sodium chloride or 0.5% sodium deoxycholate. 3. Extracts prepared with both solvents displayed on gel filtration a continuous range of proteins of approximate molecular weights ranging from less than 2×104 to more than 8×105. 4. The relative amount of the large proteins (mol.wt.>8×105) was conspicuously higher in brain and liver than in blood. 5. At 15min after the injection of [U-14C]glucose the smaller protein molecules (mol.wt.<2×104) were significantly radioactive, whereas no 14C could be detected in the larger (mol.wt.>2×104) protein molecules. The labelling of all protein samples was similar within 4h after injection of [U-14C]glucose. Fractionation of brain proteins into distinctly different groups by the methods used in the present work yielded protein samples with a specific radioactivity comparable with that of total brain protein. 6. No evidence could be obtained by the methods used in the present and previous work to indicate the presence of a significant amount of `metabolically inert protein' in the brain. 7. It is concluded that: (a) most or all of the brain proteins are in a dynamic state of equilibrium between continuous catabolism and anabolism; (b) the continuous conversion of glucose into protein is an important part of the maintenance of this equilibrium and of the homoeostasis of brain proteins in vivo.  相似文献   

15.
Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([18F]FDG) and dopamine transporter ([18F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [18F]FDG and [18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice.

Methods

Twenty-three adult C57BL6 mice were scanned with [18F]FDG and [18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [18F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination.

Results

Registration accuracy was between 0.21–1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45–60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT availability.

Conclusion

MRM-based small-animal PET templates facilitate accurate assessment and spatial localization of mouse brain function using VOI or voxel-based analysis. Regional intersubject- and test-retest variations indicate that for these targets accuracy comparable to humans can be achieved.  相似文献   

16.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

17.
Morandi D  Prado E  Sagan M  Duc G 《Mycorrhiza》2005,15(4):283-289
From a pool of Medicago truncatula mutants—obtained by gamma-irradiation or ethyl methanesulfonate mutagenesis—impaired in symbiosis with the N-fixing bacterium Sinorhizobium meliloti, new mutants are described and genetically analysed, and for already reported mutants, complementary data are given on their phenotypic and genetic analysis. Phenotypic data relate to nodulation and mycorrhizal phenotypes. Among the five new mutants, three were classified as [Nod+ Fix Myc+] and the mutations were ascribed to two loci, Mtsym20 (TRV43, TRV54) and Mtsym21 (TRV49). For the two other new mutants, one was classified as [Nod–/+ Myc+] with a mutation ascribed to gene Mtsym15 (TRV48), and the other as [Nod Myc-/+] with a mutation ascribed to gene Mtsym16 (TRV58). Genetic analysis of three previously described mutants has shown that [Nod–/+ Myc+] TR74 mutant can be ascribed to gene Mtsym14, and that [Nod–/+ Myc–/+] TR89 and TRV9 mutants are ascribed to gene Mtsym2 (dmi2). Using a detailed analysis of mycorrhizal phenotype, we have observed a delayed typical arbuscular mycorrhizal formation on some mutants that present thick lens-shaped appressoria. This phenotype was called [Myc–/+] and mutants TR25, TR26, TR89, TRV9, P1 and Y6 were reclassified as [Myc–/+]. Mutant P1 was reclassified as [Nod–/+] because of a late nodulation observed on roots of this mutant.  相似文献   

18.

Objectives

Intra-individual spatial overlap analysis of tumor volumes assessed by MRI, the amino acid PET tracer [18F]-FET and the nucleoside PET tracer [18F]-FLT in high-grade gliomas (HGG).

Methods

MRI, [18F]-FET and [18F]-FLT PET data sets were retrospectively analyzed in 23 HGG patients. Morphologic tumor volumes on MRI (post-contrast T1 (cT1) and T2 images) were calculated using a semi-automatic image segmentation method. Metabolic tumor volumes for [18F]-FET and [18F]-FLT PETs were determined by image segmentation using a threshold-based volume of interest analysis. After co-registration with MRI the morphologic and metabolic tumor volumes were compared on an intra-individual basis in order to estimate spatial overlaps using the Spearman''s rank correlation coefficient and the Mann-Whitney U test.

Results

[18F]-FLT uptake was negative in tumors with no or only moderate contrast enhancement on MRI, detecting only 21 of 23 (91%) HGG. In addition, [18F]-FLT uptake was mainly restricted to cT1 tumor areas on MRI and [18F]-FLT volumes strongly correlated with cT1 volumes (r = 0.841, p<0.001). In contrast, [18F]-FET PET detected 22 of 23 (96%) HGG. [18F]-FET uptake beyond areas of cT1 was found in 61% of cases and [18F]-FET volumes showed only a moderate correlation with cT1 volumes (r = 0.573, p<0.001). Metabolic tumor volumes beyond cT1 tumor areas were significantly larger for [18F]-FET compared to [18F]-FLT tracer uptake (8.3 vs. 2.7 cm3, p<0.001).

Conclusion

In HGG [18F]-FET but not [18F]-FLT PET was able to detect metabolic active tumor tissue beyond contrast enhancing tumor on MRI. In contrast to [18F]-FET, blood-brain barrier breakdown seems to be a prerequisite for [18F]-FLT tracer uptake.  相似文献   

19.
Metabolism of 3H- and 14C-labelled lactate in starved rats   总被引:4,自引:2,他引:4       下载免费PDF全文
1. [2-3H,U-14C]- or [3-3H,U-14C]-Lactate was administered by infusion or bolus injection to overnight-starved rats. Tracer lactate was injected or infused through indwelling cannulas into the aorta and blood was sampled from the vena cava (A–VC mode), or it was administered into the vena cava and sampled from the aorta (V–A mode). Sampling was continued after infusion was terminated to obtain the wash-out curves for the tracer. The activities of lactate, glucose, amino acids and water were followed. 2. The kinetics of labelled lactate in the two modes differed markedly, but the kinetics of labelled glucose were much the same irrespective of mode. 3. The kinetics of 3H-labelled lactate differed markedly from those for [U-14C]lactate. Isotopic steady state was attained in less than 1h of infusion of [3H]lactate but required over 6h for [U-14C]lactate. 4. 3H from [2-3H]lactate labels glucose more extensive than does that from [3-3H]lactate. [3-3H]Lactate also labels plasma amino acids. The distribution of 3H in glucose was determined. 5. Maximal radioactivity in 3HOH in plasma is attained in less than 1min after injection. Near-maximal radioactivity in [14C]glucose and [3H]glucose is attained within 2–3min after injection. 6. The apparent replacement rates for lactate were calculated from the areas under the specific-radioactivity curves or plateau specific radioactivities after primed infusion. Results calculated from bolus injection and infusion agreed closely. The apparent replacement rate for [3H]lactate from the A–VC mode averaged about 16mg/min per kg body wt. and that in the V–A mode about 8.5mg/min per kg body wt. The apparent rates for [14C]lactate (`rate of irreversible disposal') were 8mg/min per kg body wt. for the A–VC mode and 5.5mg/min per kg body wt. for the V–A mode. Apparent recycling of lactate carbon was 55–60% according to the A–VC mode and 35% according to the V–A mode. 7. The specific radioactivities of [U-14C]glucose at isotopic steady state were 55% and 45% that of [U-14C]lactate in the A–VC and V–A modes respectively. We calculated, correcting for the dilution of 14C in gluconeogenesis via oxaloacetate, that over 70% of newly synthesized glucose was derived from circulating lactate. 8. Recycling of 3H between lactate and glucose was evaluated. It has no significant effect on the calculation of the replacement rate, but affects considerably the areas under the wash-out curves for both [2-3H]- and [3-3H]-lactate, and calculation of mean transit time and total lactate mass in the body. Corrected for recycling, in the A–VC mode the mean transit time is about 3min, the lactate mass about 50mg/kg body wt. and the lactate space about 65% of body space. The V–A mode yields a mass and lactate space about half those with the A–VC mode. 9. The area under the wash-out curve for [14C]lactate is some 20–30 times that for [3H]lactate, and apparent carbon mass is 400–500mg/kg body wt. and presumably includes the carbon of glucose, pyruvate and amino acids, which are exchanging rapidly with that of lactate.  相似文献   

20.
For the quantification of nitrite and nitrate, the stable metabolites of -arginine-derived nitric oxide (NO) in human urine and plasma, we developed a gas chromatographic—mass spectrometric (GC—MS) method in which [15N]nitrite and [15N]nitrate were used as internal standards. Endogenous nitrite and [15N]nitrite added to acetone-treated plasma and urine samples were converted into their pentafluorobenzyl (PFB) derivatives using PFB bromide as the alkylating agent. For the analysis of endogenous nitrate and [15N]nitrate they were reduced to nitrite and [15N]nitrite, respectively, by cadmium in acidified plasma and urine samples prior to PFB alkylation. Reaction products were extracted with toluene and 1-μl aliquots were analyzed by selected-ion monitoring at m/z 46 for endogenous nitrite (nitrate) and m/z 47 for [15N]nitrite ([15N]nitrate). The intra- and inter-assay relative standard deviations for the determination of nitrite and nitrate in urine and plasma were below 3.8%. The detection limit of the method was 22 fmol of nitrite. Healthy subjects (n = 12) excreted into urine 0.49 ± 0.25 of nitrite and 109.5 ± 61.7 of nitrate (mean ± S.D., μmol/mmol creatinine) with a mean 24-h output of 5.7 μmol for nitrite and 1226 μmol for nitrate. The concentrations of nitrite and nitrate in the plasma of these volunteers were determined to be (mean ± S.D., μmol/l) 3.6 ± 0.8 and 68 ± 17, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号