首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.  相似文献   

2.
Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.  相似文献   

3.
The cotton bollworm, Helicoverpa armigera, is one of the most important insect pests in cotton growing regions of China. Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been deployed for combating cotton bollworm since 1997. Natural refugees derived from the mixed planting system consisting of cotton, corn, soybean, vegetables, peanut and others on single-family farms of a small scale were used for delaying the evolution of resistance to Bt cotton. Susceptibility of H. armigera field populations to the Bt insecticidal protein Cry1Ac was monitored from 1997 to 2006. The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.  相似文献   

4.
Sweet corn, Zea mays L., is attacked by a variety of insect pests that can cause severe losses to the producer. Current control practices are largely limited to the application of broad-spectrum insecticides that can have a substantial and deleterious impact on the natural enemy complex. Predators have been shown to provide partial control of sweet corn pests when not killed by broad-spectrum insecticides. New products that specifically target the pest species, while being relatively benign to other insects, could provide more integrated control. In field trials we found that transgenic Bt sweet corn, and the foliar insecticides indoxacarb and spinosad are all less toxic to the most abundant predators in sweet corn (Coleomegilla maculate [DeGeer], Harmonia axyridis [Pallas], and Orius insidiosus [Sav]) than the pyrethroid lambda cyhalothrin. Indoxacarb, however, was moderately toxic to coccinellids and spinosad and indoxacarb were somewhat toxic to O. insidiosus nymphs at field rates. Bt sweet corn and spinosad were able to provide control of the lepidopteran pests better than or equal to lambda cyhalothrin. The choice of insecticide material made a significant impact on survival of the pests and predators, while the frequency of application mainly affected the pests and the rate applied had little effect on either pests or predators. These results demonstrate that some of the new products available in sweet corn allow a truly integrated biological and chemical pest control program in sweet corn, making future advances in conservation, augmentation and classical biological control more feasible.  相似文献   

5.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

6.
Li G  Feng H  Chen P  Wu S  Liu B  Qiu F 《Environmental entomology》2010,39(4):1378-1387
Transgenic cotton has shown great promise for the control of target pest insects; however, frequent outbreaks of nontarget pest mirids has been recorded in recent years in northern China. To test the hypothesis that transgenic cotton contributes to nontarget pest outbreaks, we studied the impact of transgenic Bt cottons (both Bt and Bt + CpTI) on the fitness of nontarget pest Adelphocoris suturalis Jakovlev. No significant differences were detected between population densities of A. suturalis in unsprayed nontransgenic cottons and in unsprayed transgenic Bt cottons in 2007, 2008, and 2009. No difference in preferred oviposition site or egg production was detected between transgenic and nontransgenic cottons in both free choice and no choice tests. No difference in life table parameters was detected for A. suturalis between Bt cottons and nontransgenic cottons. All these results indicated that transgenic crops did not contribute to the nontarget pest outbreaks when being compared with their parental lines. The possible reasons for intensified pest status of A. suturalis, such as decrease of pesticide application, deficient natural enemies, and area-wide shift of cotton varieties, were discussed.  相似文献   

7.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt crops (e.g., corn, cotton, and soybean) in North and South America. This pest has recently invaded Africa and Asia including China and the invasion has placed a great threat to the food security in many countries of these two continents. Due to the extensive use of Bt crops, practical resistance of S. frugiperda to Cry1F corn (TC 1507) with field control problems has widely occurred in Puerto Rico, Brazil, Argentina, and the mainland United States. Analyzing data generated from decade-long studies showed that several factors might have contributed to the wide development of the resistance. These factors include (1) limited modes of action of Bt proteins used in Bt crops; (2) cross-resistance among Cry1 proteins; (3) use of nonhigh dose Bt crop traits; (4) that the resistance is complete on Bt corn plants; (5) abundant in initial Cry1F resistance alleles; and (6) lack of fitness costs/recessive fitness costs of the resistance. The long-term use of Bt crop technology in the Americas suggests that Bt corn can be an effective tool for controlling S. frugiperda in China. IRM programs for Bt corn in China should be as simple as possible to be easily adopted by small-scale growers. The following aspects may be considered in its Bt corn IRM programs: (1) use of only “high dose” traits for both S. frugiperda and stalk borers; (2) developing and implementing a combined resistance monitoring program; (3) use “gene pyramiding” as a primary IRM strategy; and (4) if possible, Bt corn may not be planted in the areas where S. frugiperda overwinters. Lessons and experience gained from the global long-term use of Bt crops should have values in improving IRM programs in the Americas, as well as for a sustainable use of Bt corn technology in China.  相似文献   

8.
转基因抗虫棉花和玉米自1996年商业化种植以来,已取得显著的经济、生态和社会效益。与其相关的生态安全性,特别是其对非靶标生物的影响及靶标害虫的抗性监测和治理已成为人们普遍关注的话题。本文在大量室内和田间评价工作的基础上,系统综述了国内外研究在该领域内取得的进展。结果表明: 由于Bt棉田和玉米田杀虫剂用量的减少,某些对Bt杀虫蛋白不敏感的非靶标植食害虫种群有上升的趋势; 现阶段生产上推广种植的Bt棉花和玉米花粉对家蚕、柞蚕和蜜蜂等经济昆虫以及帝王斑蝶是安全的。杀虫剂用量的减少,降低了对天敌的杀伤力,Bt田中捕食性天敌的种类和数量均显著高于常规施药田; 但Bt田内靶标害虫数量的减少和质量的降低,在一定程度上影响了寄生性天敌的种类和数量。Bt棉花和玉米的大面积种植对农田生态系统节肢动物群落结构无明显不利影响。靶标害虫田间抗性监测结果表明,无论在以大农场单一种植经营为主的发达国家如美国或澳大利亚,还是在以小农经营为主的多种寄主作物小规模交叉混合种植模式的发展中国家如中国或印度,田间并未出现10年前人们所关注和预测的靶标害虫种群抗性上升问题。究其原因,可能与发达国家严格执行了预防性的抗性治理对策及发展中国家独特的作物种植模式有关。尽管目前在田间尚未发现害虫对Bt作物产生抗性,但应用更多年份之后,害虫对Bt作物的抗性就很可能不是“是否”发生问题,而是“何时”发生的问题。因此,今后的研究重点应放在Bt棉花和玉米长期、大面积种植后,其对非靶标生物及靶标害虫抗性发展影响的长期生态效应上。  相似文献   

9.
Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.  相似文献   

10.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

11.
Producers of Bt cotton, Gossypium hirsutum L. (Malvaceae), in the southeastern USA face significant losses from highly polyphagous stink bug species. These problems may be exacerbated by crop rotation practices that often result in cotton, peanut, Arachis hypogaea L., and soybean, Glycine max (L.) Merrill (both Fabaceae), growing in close proximity to one another. Because all of these crops are hosts for the major pest stink bug species in the region, we experimentally examined colonization preference of these species among the crops to clarify this aspect of their population dynamics. We planted peanut, soybean, Bt cotton, and glyphosate‐tolerant (RR) non‐Bt cotton at three sites over 3 years in replicated plots ranging from 192 to 1 323 m2 and calculated odds ratios for colonization of each crop for Nezara viridula (L.) and Euschistus servus (Say) (both Hemiptera: Pentatomidae). In four of five experiments, both E. servus and N. viridula preferred soybean significantly more often than Bt cotton, non‐Bt cotton, and peanut. Neither N. viridula nor E. servus showed any preference between non‐Bt and Bt cotton in any experiment. Both species had higher numbers in Bt and non‐Bt cotton relative to peanut; this was not significant for any single experiment, but analyses across all experiments indicated that N. viridula preferred Bt and non‐Bt cotton significantly more often than peanut. Our results suggest that soybean in the landscape may function as a sink for stink bug populations relative to nearby peanut and cotton when the soybean is in the reproductive stage of development. Stink bug preference for soybean may reduce pest pressure in near‐by crops, but population increases in soybean could lead to this crop functioning as a source for later‐season pest pressure in cotton.  相似文献   

12.
Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.  相似文献   

13.
转基因作物的长期大面积种植, 在为农业生产带来惠益的同时, 对农业生态系统的健康和稳定可能会产生潜在的影响。转基因作物表达的Bt蛋白对靶标害虫起到较好的控制效果, 而对Bt蛋白不敏感的非靶标害虫种群可能会迅速发展起来, 对作物造成为害。随着抗虫转基因作物的连续多年种植, 科学家们对于田间杀虫剂施用量的增减看法不尽一致。通过总结已有的研究报道, 本文以Bt玉米和Bt棉花为例, 分析了大田中非靶标害虫暴发的现状, 以及暴发的主要原因(如杀虫剂的使用、害虫天敌减少和物种替代)。在生产实践中, 抗虫作物的长期大面积释放导致广谱杀虫剂施用量减少, 田间非靶标害虫数量上升。因此今后需要继续开展更多的研究来综合评估种植转Bt基因作物产生的长期潜在影响, 优化害虫防治措施, 避免非靶标害虫暴发。  相似文献   

14.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

15.
Detection and monitoring of insect resistance to transgenic Bt crops   总被引:5,自引:0,他引:5  
Transgenic crops expressing Bacillus thuringiensis (Bt) endotoxins havebecome one of the most important tools for managing corn and cotton insect pests in the US and other countries. The widespread adoption of transgenic Bt crops could place a high degree of selection pressure on the target insect populations and accelerate development of resistance, raising concerns about the long-term durability of Bt plants as an effective pest management tool. Conservation of Bt susceptibility in insects has become one of the most active research areas in modern agriculture. One of the key factors for a successful Bt resistance management plan is to have a cost-effective monitoring system that can provide information on. (i) the initial Bt resistance allele frequencies at low levels in field insect populations; and (ii) early shifts in Bt resistance allele frequencies so that proactive measures for managing resistance can be deployed well before field control failures. Developing such a monitoring program has been difficult because: (i) resistance traits that occur at very low frequencies are hard to detect; (ii) many factors affect the sensitivity and accuracy of a Bt resistance monitoring program; and (iii) monitoring resistance is costly. Several novel methods for detecting Bt resistance alleles developed during the last decade have made a cost-effective monitoring system possible. Future studies should focus on how to improve and standardize the methodologies for insect sampling and Bt resistance detection.  相似文献   

16.
Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China   总被引:4,自引:0,他引:4  
Wan P  Huang Y  Wu H  Huang M  Cong S  Tabashnik BE  Wu K 《PloS one》2012,7(1):e29975
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

17.
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.  相似文献   

18.
A global approach to resistance monitoring   总被引:3,自引:0,他引:3  
Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been grown in many parts of the world since 1996. In the United States, the Environmental Protection Agency (EPA) has required that industry submit insect resistance management (IRM) plans for each Bt corn and cotton product commercialized. A coalition of stakeholders including the EPA, USDA, academic scientists, industry, and grower organizations have cooperated in developing specific IRM strategies. Resistance monitoring (requiring submission of annual reports to the EPA), and a remedial action plan addressing any contingency if resistance should occur, are important elements of these strategies. At a global level, Monsanto conducts baseline susceptibility studies (prior to commercialization), followed by monitoring studies on target pest populations, for all of its commercialized Bt crop products. To date, Monsanto has conducted baseline/monitoring studies in Argentina, Australia, Brazil, Canada, China, Colombia, India, Mexico, the Philippines, South Africa, Spain, and the United States. Examples of pests on which resistance monitoring has been conducted include cotton bollworm, Helicoverpa zea, European corn borer, Ostrinia nubilalis, pink bollworm, Pectinophora gossypiella, Southwestern corn borer, Diatraea grandiosella, tobacco budworm, Heliothis virescens, and western corn rootworm, Diabrotica virgifera virgifera, in the United States, cotton bollworm, Helicoverpa armigera, in China, India and Australia, and H. virescens and H. zea in Mexico. No field-selected resistance to Bt crops has been documented.  相似文献   

19.
Agricultural systems often provide a model for testing ecological hypotheses, while ecological theory can enable more effective pest management. One of the best examples of this is the interaction between host‐plant resistance and natural enemies. With the advent of crops that are genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt), a new form of host‐plant resistance has been introduced to agroecosystems. How Bt crops interact with natural enemies, especially insect pathogens in below‐ground systems, is not well understood, but provides a unique opportunity to study below‐ground tritrophic interactions. In this study, we used two species of entomopathogenic fungi and three species of entomopathogenic nematodes to determine how this community of soil‐borne natural enemies might interact with Bt maize (event 59122, expressing the insecticidal protein Cry34/35Ab1) to affect survival and development of western corn rootworm (Diabrotica virgifera virgifera), which is an obligate root feeder and a serious pest of maize. We ran two experiments, one in a greenhouse and one in a growth chamber. Both experiments consisted of a fully crossed design with two maize treatments (Bt maize and non‐Bt maize) and two entomopathogen treatments (present or absent). The community of entomopathogens significantly increased mortality of western corn rootworm, and Bt maize increased larval developmental time and mortality. Entomopathogens and Bt maize acted in an independent and additive manner, with both factors increasing the mortality of western corn rootworm. Results from this study suggest that entomopathogens may complement host‐plant resistance from Bt crops.  相似文献   

20.
昆虫对Bt作物抗性监测技术   总被引:6,自引:0,他引:6  
Bt棉花等转抗虫基因作物已在许多国家商业化种植 ,靶标昆虫的潜在抗性是广泛关注的重要问题。为了准确地监测昆虫的抗性动态 ,近年来在传统的基于标准生物测定确定抗性指数的基础上先后发展了诊断剂量、单对杂交、F2 代检测和分子生物学检测抗性等位基因等抗性监测方法。该文综述了相关的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号