首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
YC Lee  MJ Lee  HY Yu  C Chen  CH Hsu  KP Lin  KK Liao  MH Chang  YC Liao  BW Soong 《PloS one》2012,7(8):e38543

Background

Mutations in the PRRT2 gene have recently been identified in patients with familial paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) and patients with sporadic PKD/IC from several ethnic groups. To extend these recent genetic reports, we investigated the frequency and identities of PRRT2 mutations in a cohort of Taiwanese patients with PKD/IC.

Methodology and Principal Findings

We screened all 3 coding exons of PRRT2 for mutations in 28 Taiwanese patients with PKD/IC. Among them, 13 had familial PKD/IC and 15 were apparently sporadic cases. In total, 7 disparate mutations were identified in 13 patients, including 8 familial cases and 5 apparently sporadic cases. The mutations were not present in 500 healthy controls. Four mutations were novel. One patient had a missense mutation and all other patients carried PRRT2 mutations putatively resulting in a protein truncation. Haplotype analysis revealed that 5 of the 7 patients with the PRRT2 p.R217Pfs*8 mutation shared the same haplotype linked to the mutation.

Conclusions and Significance

PRRT2 mutations account for 61.5% (8 out of 13) of familial PKD/IC and 33.3% (5 out of 15) of apparently sporadic PKD/IC in the Taiwanese cohort. Most patients with the PRRT2 p.R217Pfs*8 mutation in Taiwan likely descend from a single common ancestor. This study expands the spectrum of PKD/IC-associated PRRT2 mutations, highlights the pathogenic role of PRRT2 mutations in PKD/IC, and suggests genetic heterogeneity within idiopathic PKD.  相似文献   

2.
Paroxysmal dyskinesias (PDs) are a group of episodic movement disorders with marked variability in clinical manifestation and potential association with epilepsy. PRRT2 has been identified as a causative gene for PDs, but the phenotypes and inheritance patterns of PRRT2 mutations need further clarification. In this study, 10 familial and 21 sporadic cases with PDs and PDs‐related phenotypes were collected. Genomic DNA was screened for PRRT2 mutations by direct sequencing. Seven PRRT2 mutations were identified in nine (90.0%) familial cases and in six (28.6%) sporadic cases. Five mutations are novel: two missense mutations (c.647C>G/p.Pro216Arg and c.872C>T/p.Ala291Val) and three truncating mutations (c.117delA/p.Val41TyrfsX49, c.510dupT/p.Leu171SerfsX3 and c.579dupA/p.Glu194ArgfsX6). Autosomal dominant inheritance with incomplete penetrance was observed in most of the familial cases. In the sporadic cases, inheritance was heterogeneous including recessive inheritance with compound heterozygous mutations, inherited mutations with incomplete parental penetrance and de novo mutation. Variant phenotypes associated with PRRT2 mutations, found in 36.0% of the affected cases, included febrile convulsions, epilepsy, infantile non‐convulsive seizures (INCS) and nocturnal convulsions (NC). All patients with INCS or NC, not reported previously, displayed abnormalities on electroencephalogram (EEG). No EEG abnormalities were recorded in patients with classical infantile convulsions and paroxysmal choreoathetosis (ICCA)/paroxysmal kinesigenic dyskinesia (PKD). Our study further confirms that PRRT2 mutations are the most common cause of familial PDs, displaying both dominant and recessive inheritance. Epilepsy may occasionally occur in ICCA/PKD patients with PRRT2 mutations. Variant phenotypes INCS or NC differ from classical ICCA/PKD clinically and electroencephalographically. They have some similarities with, but not identical to epilepsy, possibly represent an overlap between ICCA/PKD and epilepsy .  相似文献   

3.

Background

Mutations in the PRRT2 gene have been identified as the major cause of benign familial infantile epilepsy (BFIE), paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with paroxysmal choreoathetosis/dyskinesias (ICCA). Here, we analyzed the phenotypes and PRRT2 mutations in Chinese families with BFIE and ICCA.

Methods

Clinical data were collected from 22 families with BFIE and eight families with ICCA. PRRT2 mutations were screened using PCR and direct sequencing.

Results

Ninety-five family members were clinically affected in the 22 BFIE families. During follow-up, two probands had one seizure induced by diarrhea at the age of two years. Thirty-one family members were affected in the eight ICCA families, including 11 individuals with benign infantile epilepsy, nine with PKD, and 11 with benign infantile epilepsy followed by PKD. Two individuals in one ICCA family had PKD or ICCA co-existing with migraine. One affected member in another ICCA family had experienced a fever-induced seizure at 7 years old. PRRT2 mutations were detected in 13 of the 22 BFIE families. The mutation c.649_650insC (p.R217PfsX8) was found in nine families. The mutations c.649delC (p.R217EfsX12) and c.904_905insG (p.D302GfsX39) were identified in three families and one family, respectively. PRRT2 mutations were identified in all eight ICCA families, including c.649_650insC (p.R217PfsX8), c.649delC (p.R217EfsX12), c.514_517delTCTG (p.S172RfsX3) and c.1023A?>?T (X341C). c.1023A?>?T is a novel mutation predicted to elongate the C-terminus of the protein by 28 residues.

Conclusions

Our data demonstrated that PRRT2 is the major causative gene of BFIE and ICCA in Chinese families. Site c.649 is a mutation hotspot: c.649_650insC is the most common mutation, and c.649delC is the second most common mutation in Chinese families with BFIE and ICCA. As far as we know, c.1023A?>?T is the first reported mutation in exon 4 of PRRT2. c.649delC was previously reported in PKD, ICCA and hemiplegic migraine families, but we further detected it in BFIE-only families. c.904_905insG was reported in an ICCA family, but we identified it in a BFIE family. c.514_517delTCTG was previously reported in a PKD family, but we identified it in an ICCA family. Migraine and febrile seizures plus could co-exist in ICCA families.
  相似文献   

4.
Paroxysmal dyskinesias (PD) are a heterogeneous group of disorders characterized by sudden attacks of involuntary hyperkinetic movements. In rare cases PD can be symptomatic (e.g. of underlying lesions in the basal ganglia), but most forms have a genetic background. Based on the trigger factors, PD are clinically divided into kinesigenic (PKC/PKD/DYT10), nonkinesigenic (PNKD/DYT8) and exercise-induced (PED/DYT18) forms. The first genes have been described for PNKD (MR1) and PED (SLC2A1). Whereas the function of the MR1 protein is still poorly understood, mutations in SLC2A1 lead to a reduced transport of glucose across the blood–brain barrier. Recently, mutations in PRRT2—which seems to be important in the neuronal synaptic vesicular cycle—were described in patients with PKD. This review summarizes the clinical symptoms, brain imaging findings, pathophysiology and therapeutic options pertaining to the different PD.  相似文献   

5.
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).  相似文献   

6.
It is known that several of the most severe complications of autosomal-dominant polycystic kidney disease, such as intracranial aneurysms, cluster in families. There have been no studies reported to date, however, that have attempted to correlate severely affected pedigrees with a particular genotype. Until recently, in fact, mutation detection for most of the PKD1 gene was virtually impossible because of the presence of several highly homologous loci also located on chromosome 16. In this report we describe a cluster of 4 bp in exon 15 that are unique to PKD1. Forward and reverse PKD1-specific primers were designed in this location to amplify regions of the gene from exons 11-21 by use of long-range PCR. The two templates described were used to analyze 35 pedigrees selected for study because they included individuals with either intracranial aneurysms and/or very-early-onset disease. We identified eight novel truncating mutations, two missense mutations not found in a panel of controls, and several informative polymorphisms. Many of the polymorphisms were also present in the homologous loci, supporting the idea that they may serve as a reservoir for genetic variability in the PKD1 gene. Surprisingly, we found that three independently ascertained pedigrees had an identical 2-bp deletion in exon 15. This raises the possibility that particular genotypes may be associated with more-severe disease.  相似文献   

7.
8.
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.  相似文献   

9.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent inherited disorders. The majority of cases are due to mutation of the PKD1 gene, on 16p13.3, while in most of the remainder the disease maps to the PKD2 locus, at chromosome 4q21-q23. Recently, the PKD2 gene has been positionally cloned and three nonsense mutations within the coding sequence of the gene identified. Here we report a systematic mutation screening of all 15 exons of the PKD2 gene in chromosome 4-linked ADPKD families, using heteroduplex and SSCP analyses. We have identified and characterized seven novel mutations, with a detection rate of approximately 90% in the population studied. All of the mutations result in the premature stop of translation: four nonsense changes and three deletions. The deletions are all frameshifting, of four T nucleotides in one case and one G nucleotide in the other two. All mutations are unique and are distributed throughout the gene without evidence of clustering. Comparison of specific mutations with the clinical profile in ADPKD2 families shows no clear correlation. Received: 5 April 1997 / Accepted: 31 July 1997  相似文献   

10.
Most cases of autosomal dominant polycystic kidney disease (ADPKD) are the result of mutations in the PKD1 gene. The PKD1 gene codes for a large cell-surface glycoprotein, polycystin-1, of unknown function, which, based on its predicted domain structure, may be involved in protein-protein and protein-carbohydrate interactions. Approximately 30% of polycystin-1 consists of 16 copies of a novel protein module called the PKD domain. Here we show that this domain has a beta-sandwich fold. Although this fold is common to a number of cell-surface modules, the PKD domain represents a distinct protein family. The tenth PKD domain of human and Fugu polycystin-1 show extensive conservation of surface residues suggesting that this region could be a ligand-binding site. This structure will allow the likely effects of missense mutations in a large part of the PKD1 gene to be determined.  相似文献   

11.
Polycystic kidney disease is an inherited heterogeneous disorder that affects approximately 11000 Europeans. It is characterized mainly by the formation of cysts in the kidney that lead to end-stage renal failure with late age of onset. Three loci have been identified, PKD1 on the short arm of chromosome 16, which has recently been isolated and characterized, PKD2 on the long arm of chromosome 4, and a third locus of unknown location, that is apparently much rarer. In families that transmit the PKD2 gene there is a significantly later age of onset of symptoms, compared with families that transmit the PKD1 gene, and in general they present with milder progression of symptomatology. For the first time we attempted molecular genetic analysis in seven Cypriot families using highly polymorphic markers around the PKD1 and PKD2 genes. Our data showed that there is genetic and phenotypic heterogeneity among these families. For four of the families we obtained strong evidence for linkage to the PKD1 locus. In two of these families linkage to PKD1 was strengthened by excluding linkage to PKD2 with the use of marker D4S423. In three other families we showed linkage to the PKD2 locus. In the largest of these families one recombinant placed marker D4S1534 distal to D4S231, thereby rendering it the closest proximal marker known to us to date. The application of molecular methods allowed us to make presymptomatic diagnosis for a number of at-risk individuals.  相似文献   

12.
Yoo KH  Lee TY  Yang MH  Park EY  Yook YJ  Lee HS  Park JH 《BMB reports》2008,41(8):593-596
ADPKD (Autosomal Dominant Polycystic Kidney Disease) is characterized by the progressive expansion of multiple cystic lesions in the kidneys. ADPKD is caused by mutations in Ed-pl. consider PKD1 and PKD2. Recently a relation between c-myc and the pathogenesis of ADPKD was reported. In addition, c-Myc is a downstream effector of PKD1. To identify the gene regulated by PKD2 and c-Myc, we performed gene expression profiling in PKD2 and c-Myc overexpressing cells using a human 8K cDNA microarray. NCAM (neuronal cell adhesion molecule) levels were significantly reduced in PKD2 overexpressing systems in vitro and in vivo. These results suggest that NCAM is an important molecule in the cystogenesis induced by PKD2 overexpression.  相似文献   

13.
GJB2 mutations and degree of hearing loss: a multicenter study   总被引:2,自引:0,他引:2       下载免费PDF全文
Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.  相似文献   

14.
In neurons, DNA damage induces protein synthesis-dependent apoptosis mediated by the mitochondrial intrinsic cell-death pathway. Signal transduction cascades activated by genotoxic stress upstream of the mitochondria are largely unknown. We identified protein kinase D (PKD) as one of the earliest markers of neuronal DNA damage. Phosphorylation of the PKD-activation domain could be detected within 15 min of genotoxic stress and was concurrent with ataxia telangiectasia-mutated (ATM) activation. PKD stimulation was selective to DNA damage and did not occur with other stress stimuli examined. In vivo, both young and adult rats showed increased levels of phosphorylated PKD in neuronal tissues after injection of DNA-toxin etoposide. These results indicate that PKD activation is an early neuronal response to DNA damage, suggesting that signaling downstream of PKD may be critical for neuronal survival after genotoxic stress.  相似文献   

15.
Biallelic mutations in BRCA2/FANCD1 were recently recognized as a rare cause of Fanconi anemia (FA). Using immunodetection with an antiserum directed against the carboxyterminus of the BRCA2 protein, we screened 38 lymphoid cell lines from FA patients whom we could not previously assign, via retroviral complementation analysis, to any of six known FA complementation groups (FA-A, -C, -D2, -E, -F, or -G). Three of these 38 cell lines lacked the 380-kDa BRCA2 signal on immunoblots. DNA sequencing showed biallelic compound and truncating mutations in two of the immuno-negative cell lines, whereas a monoallelic frameshift mutation and an amino acid substitution were detected in the third cell line. Our data show that less than 10% of unassigned FA cell lines harbor truncating mutations in BRCA2/FANCD1. This finding strongly suggests the existence of (an) additional, as yet unknown FA gene(s).  相似文献   

16.
Mutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na+/K+ ATPase (NKA) pumps as major PRRT2-binding proteins. We confirmed PRRT2 and NKA interaction by biochemical approaches and showed their colocalization at neuronal plasma membrane. The acute or constitutive inactivation of PRRT2 had a functional impact on NKA. While PRRT2-deficiency did not modify NKA expression and surface exposure, it caused an increased clustering of α3-NKA on the plasma membrane. Electrophysiological recordings showed that PRRT2-deficiency in primary neurons impaired NKA function during neuronal stimulation without affecting pump activity under resting conditions. Both phenotypes were fully normalized by re-expression of PRRT2 in PRRT2-deficient neurons. In addition, the NKA-dependent afterhyperpolarization that follows high-frequency firing was also reduced in PRRT2-silenced neurons. Taken together, these results demonstrate that PRRT2 is a physiological modulator of NKA function and suggest that an impaired NKA activity contributes to the hyperexcitability phenotype caused by PRRT2 deficiency.Subject terms: Proteomics, Cellular neuroscience, Molecular neuroscience, Paediatric neurological disorders  相似文献   

17.
An account of familial aggregation in breast/ovarian cancer has become possible with the identification of BRCA1 germ-line mutations. We evaluated, for 249 individuals registered with the Institut Curie in Paris, the prior probability that an individual carried a mutation that predisposes to these diseases. We chose 160 women for BRCA1 analysis: 103 with a family history of breast cancer and 57 with a family history of breast-ovarian cancer. To detect small mutations, we generated and analyzed 35 overlapping genomic PCR products that cover the coding portion of the gene, by using denaturing gradient gel electrophoresis. Thirty-eight truncating mutations (32 frameshifts, 4 nonsense mutations, and 2 splice variants) were observed in 15% of women with a family history of breast cancer only and in 40% of those with a history of breast-ovarian cancer. Twelve of 25 distinct truncating mutations identified were novel and unique. Most BRCA1 mutations that had been reported more than five times in the Breast Cancer Information Core were present in our series. One mutation (5149del4) observed in two apparently unrelated families most likely originates from a common ancestor. The position of truncating mutations did not significantly affect the ratio of the risk of breast cancer to that of ovarian cancer. In addition, 15 DNA variants (14 missense mutations and 1 neutral mutation) were identified, 9 of which were novel. Indirect evidence suggests that seven of these mutations are deleterious.  相似文献   

18.
19.
The gene for autosomal dominant polycystic kidney disease (PKD1) is located on chromosome 16p, between the flanking markers D16S84 and D16S125 (26.6prox). This region is 750 kb long and has been cloned. We have looked at the association of 10 polymorphic markers from the region, with the disease and with each other. This was done in a set of Scottish families that had previously shown association with D16S94, a marker proximal to the PKD1 region. We report significant association between two CA repeat markers and the disease but have not found evidence for a single founder haplotype in these families, indicating the presence of several mutations in this population. Our results favor a location of the PKD1 gene in the proximal part of the candidate region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号