首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

2.
Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China   总被引:4,自引:0,他引:4  
Wan P  Huang Y  Wu H  Huang M  Cong S  Tabashnik BE  Wu K 《PloS one》2012,7(1):e29975
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

3.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

4.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

5.
6.
Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a large-scale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest.  相似文献   

7.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

8.
Toxins from Bacillus thuringiensis (Bt) are widely used for pest control. In particular, Bt toxin Cry1Ac produced by transgenic cotton kills some key lepidopteran pests. We found that Cry1Ac binds to recombinant peptides corresponding to extracellular regions of a cadherin protein (BtR) in a major cotton pest, pink bollworm (Pectinophora gossypiella) (PBW). In conjunction with previous results showing that PBW resistance to Cry1Ac is linked with mutations in the BtR gene, the results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW. Similar to other lepidopteran cadherins that bind Bt toxins, BtR has at least two Cry1Ac-binding domains in cadherin-repeat regions 10 and 11, which are immediately adjacent to the membrane proximal region. However, unlike cadherins from Manduca sexta and Bombyx mori, toxin binding was not seen in regions more distal from the membrane proximal region. We also found that both the protoxin and activated toxin forms of Cry1Ac bound to recombinant BtR fragments, suggesting that Cry1Ac activation may occur either before or after receptor binding.  相似文献   

9.
P Wan  Y Huang  BE Tabashnik  M Huang  K Wu 《PloS one》2012,7(7):e42004
In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.  相似文献   

10.
Two strains of pink bollworm, Pectinophora gossypiella (Saunders), each derived in 1997 from a different field population, were selected for resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac in the laboratory. One strain (MOV97-R) originated from Mohave Valley in western Arizona; the other strain (SAF97-R) was from Safford in eastern Arizona. Relative to a susceptible laboratory strain, Cry1Ac resistance ratios were 1700 for MOV97-R and 520 for SAF97-R. For the two resistant strains, larval survival did not differ between non-Bt cotton and transgenic cotton producing CrylAc. In contrast, larval survival on Bt cotton was 0% for the two unselected parent strains from which the resistant strains were derived. Previously identified resistance (r) alleles of a cadherin gene (BtR) occurred in both resistant strains: r1 and r3 in MOV97-R, and r1 and r2 in SAF97-R. The frequency of individuals carrying two r alleles (rr) was 1.0 in the two resistant strains and 0.02 in each of the two unselected parent strains. Furthermore, in two hybrid strains with a mixture of susceptible (s) and r alleles at the BtR locus, all survivors on Bt cotton had two r alleles. The results show that resistance to Cry1Ac-producing Bt cotton is associated with recessive r alleles at the BtR locus in the strains of pink bollworm tested here. In conjunction with previous results from two other Bt-resistant strains of pink bollworm (APHIS-98R and AZP-R), results reported here identify the cadherin locus as the leading candidate for molecular monitoring of pink bollworm resistance to Bt cotton.  相似文献   

11.
The cotton bollworm, Helicoverpa armigera, is one of the most important insect pests in cotton growing regions of China. Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been deployed for combating cotton bollworm since 1997. Natural refugees derived from the mixed planting system consisting of cotton, corn, soybean, vegetables, peanut and others on single-family farms of a small scale were used for delaying the evolution of resistance to Bt cotton. Susceptibility of H. armigera field populations to the Bt insecticidal protein Cry1Ac was monitored from 1997 to 2006. The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.  相似文献   

12.
Insect resistance to Bt crops: evidence versus theory   总被引:7,自引:0,他引:7  
Evolution of insect resistance threatens the continued success of transgenic crops producing Bacillus thuringiensis (Bt) toxins that kill pests. The approach used most widely to delay insect resistance to Bt crops is the refuge strategy, which requires refuges of host plants without Bt toxins near Bt crops to promote survival of susceptible pests. However, large-scale tests of the refuge strategy have been problematic. Analysis of more than a decade of global monitoring data reveals that the frequency of resistance alleles has increased substantially in some field populations of Helicoverpa zea, but not in five other major pests in Australia, China, Spain and the United States. The resistance of H. zea to Bt toxin Cry1Ac in transgenic cotton has not caused widespread crop failures, in part because other tactics augment control of this pest. The field outcomes documented with monitoring data are consistent with the theory underlying the refuge strategy, suggesting that refuges have helped to delay resistance.  相似文献   

13.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

14.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 microg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 microg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 microg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

15.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

16.
Refuges of non-Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., are used to delay Bt resistance in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), a pest that eats cotton seeds. Contamination of refuges by Bt transgenes could reduce the efficacy of this strategy. Previously, three types of contamination were identified in refuges: 1) homozygous Bt cotton plants, with 100% of their seeds producing the Bt toxin Cry1Ac; 2) hemizygous Bt plants with 70-80% of their seeds producing Cry1Ac; and 3) non-Bt plants that outcrossed with Bt plants, resulting in bolls with Cry1Ac in 12-17% of their seeds. Here, we used laboratory bioassays to examine the effects of Bt contamination on feeding behavior and survival of pink bollworm that were resistant (rr), susceptible (ss), or heterozygous for resistance (rs) to Cry1Ac. In choice tests, rr and rs larvae did not differ from ss in preference for non-Bt versus Bt seeds. Survival of rr and rs also did not differ from ss on artificial outcrossed bolls (a mixture of 20% Bt and 80% non-Bt cotton seeds). On artificial hemizygous Bt bolls (70% Bt seeds) and homozygous Bt bolls (100% Bt seeds), rr had higher survival than ss, although rs and ss did not differ. In a simulation model, levels of refuge contamination observed in the field had negligible effects on resistance evolution in pink bollworm. However, in hypothetical simulations where contamination conferred a selective advantage to rs over ss individuals in refuges, resistance evolution was accelerated.  相似文献   

17.
Transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt), often referred to as Bt cotton, is widely grown in many countries. Bt cotton with a single cry1A gene and stacked also with cry2A gene has provided satisfactory protection against the damage by the lepidopteran bollworms, especially the cotton bollworm, Helicoverpa armigera (Hübner) which is considered as a key pest. The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins carried out in many countries has provided a basis for monitoring resistance. There is no evidence of development of field-level resistance in H. armigera leading to the failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance management has become a necessity to sustain Bt cotton and other transgenic crops in view of potential of the target insects to evolve Cry toxin resistance.  相似文献   

18.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.  相似文献   

19.
Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.  相似文献   

20.
A major challenge for agriculture is management of insect resistance to toxins from Bacillus thuringiensis (Bt) produced by transgenic crops. Here we describe how a large-scale program is being developed in Arizona for management of resistance to Bt cotton in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), and other insect pests of cotton. Financial support from growers makes this program possible. Collaboration between the Arizona Cotton Research and Protection Council, the University of Arizona, and government agencies has led to development of resistance management guidelines, a remedial action plan, and tools for monitoring compliance with the proposed guidelines. Direct participation in development of resistance management policies is a strong incentive for growers to invest in resistance management research. However, more research, regularly updated regulations, and increased collaboration between stakeholders are urgently needed to maintain efficacy of Bt toxins in transgenic crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号