首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system.  相似文献   

2.
In Gram-negative bacteria, all the proteins destined for the outer membrane are synthesized with a signal sequence that is cleaved, either by the signal peptidase LepB for integral outer membrane proteins or by LspA for lipoproteins, when they cross the cytoplasmic membrane. The Dickeya dadantii protein PnlH does not possess a cleavable signal sequence but is anchored in the outer membrane by an N-terminal targeting signal. Addition of the 41 N-terminal amino acids of PnlH is sufficient for anchoring various hybrid proteins in the outer membrane. This targeting signal presents some of the characteristics of a Tat (twin arginine translocation) signal sequence but without an obvious cleavage site. We found that the Tat translocation pathway is required for the targeting process. This new mechanism of outer membrane protein targeting is probably widespread as PnlH was also addressed to the outer membrane when expressed in Escherichia coli . As PnlH was not detected as a substrate by Tat signal sequence prediction programmes, this would suggest that there may be many other unknown Tat-dependent outer membrane proteins.  相似文献   

3.
Targeting of proteins to and translocation across the membranes is a fundamental biological process in all organisms. In bacteria, the twin arginine translocation (Tat) system can transport folded proteins. Here, we demonstrate in vivo that the high potential iron-sulfur protein (HiPIP) from Allochromatium vinosum is translocated into the periplasmic space by the Tat system of Escherichia coli. In vitro, reconstituted HiPIP precursor (preHoloHiPIP) was targeted to inverted membrane vesicles from E. coli by a process requiring ATP when the Tat substrate was properly folded. During membrane targeting, the protein retained its cofactor, indicating that it was targeted in a folded state. Membrane targeting did not require a twin arginine motif and known Tat system components. On the basis of these findings, we propose that a pathway exists for the insertion of folded cofactor-containing proteins such as HiPIP into the bacterial cytoplasmic membrane.  相似文献   

4.
The general secretory pathway (GSP) is a two-step process for the secretion of proteins by Gram-negative bacteria. The translocation across the outer membrane is carried out by the type II system, which involves machinery called the secreton. This step is considered to be an extension of the general export pathway, i.e. the export of proteins across the inner membrane by the Sec machinery. Here, we demonstrate that two substrates for the Pseudomonas aeruginosa secreton, both phospholipases, use the twin-arginine translocation (Tat) system, instead of the Sec system, for the first step of translocation across the inner membrane. These results challenge the previous vision of the GSP and suggest for the first time a mosaic model in which both the Sec and the Tat systems feed substrates into the secreton. Moreover, since P.aeruginosa phospholipases are secreted virulence factors, the Tat system appears to be a novel determinant of bacterial virulence.  相似文献   

5.
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.  相似文献   

6.
The twin arginine translocation (Tat) system is a machinery which can translocate folded proteins across energy transducing membranes. Currently it is supposed that Tat substrates bind directly to Tat translocon components before a ApH-driven translocation occurs. In this review, an alternative model is presented which proposes that membrane integration could precede Tat-dependent translocation. This idea is mainly supported by the recent observations of Tat-independent membrane insertion of Tat substrates in vivo and in vitro. Membrane insertion may allow i) a quality control of the folded state by membrane bound proteases like FtsH, ii) the recognition of the membrane spanning signal peptide by Tat system components, and iii) a pulling mechanism of translocation. In some cases of folded Tat substrates, the membrane targeting process may require ATP-dependent N-terminal unfolding-steps.  相似文献   

7.
The Tat protein-export system serves to translocate folded proteins, often containing redox cofactors, across the bacterial inner membrane. Substrate proteins are directed to the Tat apparatus by distinctive N-terminal signal peptides containing a consensus SRRxFLK 'twin-arginine' motif. Here we review recent studies of the Tat system with particular emphasis on the assembly of membrane-bound respiratory complexes. We discuss the connection between Tat targeting and topological organisation of the complexes and consider the role of chaperone proteins in cofactor insertion and Tat targeting. The crystal structure of Escherichia coli formate dehydrogenase-N demonstrates that some Tat substrates are integral membrane proteins. Sequence analysis suggests that one-quarter of all traffic on the E. coli Tat pathway is inner-membrane proteins.  相似文献   

8.
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.  相似文献   

9.
The twin-arginine translocation (Tat) pathway is a prokaryotic transport system that enables the transport of folded proteins across the cytoplasmic membrane. The Tat pathway was originally thought to transport only proteins that bind cofactors in the cytoplasm and, thus, fold before transport, like many proteins related to energy metabolism. However, in recent years it has become clear that the Tat pathway has a broader role and is also an important virulence factor in different bacterial pathogens. Because the Tat pathway is well conserved among important bacterial pathogens and absent from mammalian cells, it could be a target for novel antimicrobial compounds. In this review, we highlight the importance of the Tat system for virulence in several human and plant pathogens.  相似文献   

10.
The assembly of the chloroplast thylakoid membrane requires the import of numerous proteins from the cytosol and their targeting into or across the thylakoid membrane. It is now clear that multiple pathways are involved in the thylakoid-targeting stages, depending on the type of protein substrate. Two very different pathways are used by thylakoid lumen proteins; one is the Sec pathway which has been well-characterised in bacteria, and which involves the threading of the substrate through a narrow channel. In contrast, the more recently characterised twin-arginine translocation (Tat) system is able to translocate fully folded proteins across this membrane. Recent advances on bacterial Tat systems shed further light on the structure and function of this system. Membrane proteins, on the other hand, use two further pathways. One is the signal recognition particle-dependent pathway, involving a complex interplay between many different factors, whereas other proteins insert without the assistance of any known apparatus. This article reviews advances in the study of these pathways and considers the rationale behind the surprising complexity.  相似文献   

11.
The Tat system is a recently discovered protein export pathway that serves to translocate folded proteins, often containing redox cofactors, across the bacterial cytoplasmic membrane. Here we report that tat strains are associated with a mutant cell septation phenotype, where chains of up to 10 cells are evident. Mutant strains are also hypersensitive to hydrophobic drugs and to lysis by lysozyme in the absence of EDTA, and they leak periplasmic enzymes, characteristics that are consistent with an outer membrane defect. Both phenotypes are similar to those displayed by strains carrying point mutations in the lpxC (envA) gene. The phenotype was not replicated by mutations affecting synthesis and/or activity of all known or predicted Tat substrates.  相似文献   

12.
In the secretion of polypeptides from Gram-negative bacteria, the outer membrane constitutes a specific barrier which has to be circumvented. In the majority of systems, secretion is two-step process, with initial export to the periplasm involving an N-terminal signal sequence. Transport across the outer membrane then involves a variable number of ancillary polypeptides including both periplasmic and outer membrane. While such ancillary proteins are probably specific for each secreted protein, the mechanism of movement across the outer membrane is unknown. In contrast to these systems, secretion of theE. coli hemolysin (HlyA) has several distinctive features. These include a novel targeting signal located within the last 50 or so C-terminal amino acids, the absence of any periplasmic intermediates in transfer, and a specific membrane-bound translocator, HlyB, with important mammalian homologues such as P-glycoprotein (Mdr) and the cystic fibrosis protein. In this review we discuss the nature of the HlyA targeting signal, the structure and function of HlyB, and the probability that HlyA is secreted directly to the medium through a trans-envelope complex composed of HlyB and HlyD.  相似文献   

13.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are highly defective in the integrity of their cell envelope. Here, we report the isolation, by transposon mutagenesis, of tat mutant strains that have their outer membrane integrity restored. This outer membrane repair of the tat mutant arises as a result of upregulation of the amiB gene, which encodes a cell wall amidase. Overexpression of the genes encoding the two additional amidases, amiA and amiC, does not compensate for the outer membrane defect of the tatC strain. Analysis of the amiA and amiC coding sequences indicates that the proteins may be synthesized with plausible twin-arginine signal sequences, and we demonstrate that they are translocated to the periplasm by the Tat pathway. A Tat+ strain that has mislocalized AmiA and AmiC proteins because of deletion of their signal peptides displays an identical defective cell envelope phenotype. The presence of genes encoding amidases with twin-arginine signal sequences in the genomes of other Gram-negative bacteria suggests that a similar cell envelope defect may be a common feature of tat mutant strains.  相似文献   

14.
The Tat protein export pathway   总被引:20,自引:0,他引:20  
The Tat (twin-arginine translocation) system is a bacterial protein export pathway with the remarkable ability to transport folded proteins across the cytoplasmic membrane. Preproteins are directed to the Tat pathway by signal peptides that bear a characteristic sequence motif, which includes consecutive arginine residues. Here, we review recent progress on the characterization of the Tat system and critically discuss the structure and operation of this major new bacterial protein export pathway.  相似文献   

15.
This work deals with the separation of Tat protein from a complex fermentation broth using an affinity membrane system. Tat is a regulatory protein that is critical for HIV-1 replication and thus a potential candidate for vaccine and drug development. Furthermore, Tat can facilitate transport of exogenous molecules across cell membranes and is implicated in pathogenesis of HIV dementia. Affinity membranes were prepared through coupling of avidin within a 4-stack membrane construct. Tat (naturally biotinylated) accessibility in the bacterial lysate feed was influenced by the presence of RNAse, protein concentration, and ionic strength. Enhanced accessibility translated to a marked increase in the overall product yield per pass. The purity of the membrane-isolated Tat was compared to that prepared via packed column chromatography through SDS-PAGE, Western blot, activity assay, and neurotoxicity studies. Tat protein produced via membrane separation yielded primarily monomeric forms of the oligopeptide sequence, whereas column chromatography produced predominately polymeric forms of Tat. These differences resulted in changes in the neurotoxicity and cellular uptake of the two preparations.  相似文献   

16.
Genomic analysis of secretion systems   总被引:6,自引:0,他引:6  
Secretion of proteins into the extracellular environment is important to almost all bacteria, and in particular mediates interactions between pathogenic or symbiotic bacteria with their eukaryotic hosts. The accumulation of bacterial genome sequence data in the past few years has provided great insights into the distribution and function of these secretion systems. Three systems are responsible for secretion of proteins across the bacterial cytoplasmic membrane: Sec, SRP and Tat. Many novel examples of systems for transport across the Gram-negative bacterial cell envelope have been discovered through genome sequencing and surveys, including many novel type III secretion systems and autotransporters. Similarly, genomic data mining has revealed many new potential secretion substrates and identified unsuspected domains in secretion-associated proteins. Interestingly, genomic analyses have also hinted at the existence of a dedicated protein secretion system in Gram-positive bacteria, targeting members of the WXG100/ESAT-6 family of proteins, and have revealed an unexpectedly wide distribution of sortase-driven protein-targeting systems.  相似文献   

17.
The Tat system is a recently discovered bacterial protein transport pathway that functions primarily in the biosynthesis of proteins containing redox active cofactors. Analogous transport systems are found in plant organelles. Remarkably and uniquely the Tat system functions to transported a diverse range of folded proteins across a biological membrane, a feat that must be achieved without rendering the membrane freely permeable to protons and other ions. Here we review the operation of the bacterial Tat system and propose a model for the structural organisation of the Tat preprotein translocase.  相似文献   

18.
Yahr TL  Wickner WT 《The EMBO journal》2001,20(10):2472-2479
The Tat (twin-arginine translocation) pathway is a Sec-independent mechanism for translocating folded preproteins across or into the inner membrane of Escherichia coli. To study Tat translocation, we sought an in vitro translocation assay using purified inner membrane vesicles and in vitro synthesized substrate protein. While membrane vesicles derived from wild-type cells translocate the Sec-dependent substrate proOmpA, translocation of a Tat-dependent substrate, SufI, was not detected. We established that in vivo overexpression of SufI can saturate the Tat translocase, and that simultaneous overexpression of TatA, B and C relieves this SufI saturation. Using membrane vesicles derived from cells overexpressing TatABC, in vitro translocation of SufI was detected. Like translocation in vivo, translocation of SufI in vitro requires TatABC, an intact membrane potential and the twin-arginine targeting motif within the signal peptide of SUFI: In contrast to Sec translocase, we find that Tat translocase does not require ATP. The development of an in vitro translocation assay is a prerequisite for further biochemical investigations of the mechanism of translocation, substrate recognition and translocase structure.  相似文献   

19.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
The twin-arginine (Tat) protein translocase is a highly unusual protein transport machine that is dedicated to the movement of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat pathway by means of N-terminal signal peptides harbouring a distinctive twin-arginine motif. In this minireview, we describe our current knowledge of the Tat system, paying particular attention to the function of the TatA protein and to the often overlooked step of signal peptide cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号