首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II can be phosphorylated by a p34cdc2/CDC28-containing CTD kinase. Phosphorylated serine (or threonine) is located at positions 2 and 5 in the repetitive heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show here that phosphorylation of the mouse CTD retards its electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels in a way similar to that observed for the II0 form of the largest subunit of RNA polymerase II phosphorylated in vivo. At the maximum level of phosphorylation by CTD kinase in vitro, there are 15-20 phosphates evenly distributed among the 52 heptapeptide repeats that comprise the mouse CTD. Gel filtration chromatography and sucrose gradient ultracentrifugation analyses indicate that phosphorylation induces a dramatic conformational change in the CTD with the phosphorylated form adopting a far more extended structure than the unphosphorylated CTD.  相似文献   

2.
3.
A protein kinase that phosphorylates Lys(Tyr-Ser-Pro-Thr-Ser-Pro-Ser)4, a synthetic peptide homologous to the evolutionarily-conserved, tandemly-repeated heptapeptide sequence at the C-terminus of the large subunit of eukaryotic RNA polymerase II, has been detected in HeLa cell extracts and chromatographic fractions therefrom. The enzyme, which phosphorylates serine principally, can be distinguished from previously described major protein kinases which phosphorylate the peptide poorly, if at all. It is inhibited by the nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Results suggest that human placental RNA polymerase II is phosphorylated at the C-terminus of the large subunit by the partially-purified protein kinase and that the phosphorylation is also sensitive to the nucleoside analog.  相似文献   

4.
5.
6.
The gene, rpb1, encoding the largest subunit of RNA polymerase II has been cloned from Schizosaccharomyces pombe using the corresponding gene, RPB1, of Saccharomyces cerevisiae as a cross-hybridization probe. We have determined the complete sequence of this gene, and parts of PCR-amplified rpb1 cDNA. The predicted coding sequence, interrupted by six introns, encodes a polypeptide of 1,752 amino acid residues in length with a molecular weight of 194 kilodaltons. This polypeptide contains eight conserved structural domains characteristic of the largest subunit of RNA polymerases from other eukaryotes and, in addition, 29 repetitions of the C-terminal heptapeptide found in all the eukaryotic RNA polymerase II largest subunits so far examined.  相似文献   

7.
8.
9.
10.
11.
cDNAs encoding the largest subunit of RNA polymerase II were isolated from a Dictyostelium cDNA library. A total of 2.9 kilobases (kb) of cDNA was sequenced and the amino acid sequence of the carboxyl-terminal half of the protein was deduced. Similar to other eukaryotic RNA polymerases II, the largest subunit of Dictyostelium RNA polymerase II contains a unique repetitive tail domain at its carboxyl-terminal region. It consists of 24 highly conserved heptapeptide repeats, with a consensus sequence of Tyr-Ser-Pro-Thr-Ser-Pro-Ser. In addition to the tail domain, five segments of the deduced primary structure show > 50% sequence identity with either yeast or mouse protein. RNA blots show that cDNA probes hybridized with a single mRNA species of approximately 6 kb and immunoblots using a monoclonal antibody raised against the tail domain lighted up a single protein band of 200 kilodaltons. Interestingly, expression of the largest subunit of RNA polymerase II appears to be under developmental regulation. The accumulation of its mRNA showed a 60% increase during the first 3 h of development, followed by a steady decrease during the next 6 h. Cells began to accumulate a higher level of the RNA polymerase II mRNA after 9 h of development. When cells were treated with low concentrations of cAMP pulses to stimulate the developmental process, the pattern of mRNA accumulation moved 3 h ahead, but otherwise remained similar to that of control cells.  相似文献   

12.
13.
Phosphorylation in vitro and in vivo of the wheat embryo RNA polymerase II   总被引:1,自引:0,他引:1  
One of the large subunits (220 000 daltons) of the wheat embryo RNA polymerase II was demonstrated to undergo phosphorylation with [gamma-32P]ATP in a reaction catalysed by a homologous protein kinase preparation. The same subunit was also observed to be phosphorylated in vivo, at the onset of germination. The phosphorylation resulted in a moderate increase of the RNA polymerase activity.  相似文献   

14.
15.
16.
Cracking the RNA polymerase II CTD code   总被引:3,自引:0,他引:3  
  相似文献   

17.
RPA190, the gene coding for the largest subunit of yeast RNA polymerase A   总被引:33,自引:0,他引:33  
Yeast RNA polymerases are being extensively studied at the gene level. The entire gene encoding the largest subunit of RNA polymerase A, A190, was isolated and characterized in detail. Southern hybridization and gene disruption experiments showed that the RPA190 gene is unique in the haploid yeast genome and essential for cell viability. Nuclease S1 mapping was used to identify mRNA 5' and 3' termini. RPA190 encodes a polypeptide chain of 186,270 daltons in a large uninterrupted reading frame. A dot matrix comparison of the deduced amino acid sequence of subunit A190 with Escherichia coli beta' and cognate subunits B220 and C160 from yeast RNA polymerases B and C showed a conserved pattern of homology regions (I-VI). A potential DNA-binding site (zinc-binding motif) is conserved in the N-terminal region I. Remarkably, the A190 subunit does not harbor the heptapeptide repeated sequence present in the B220 subunit. The sequence of the A190 subunit diverges from B220 and C160 by the presence of two hydrophilic domains inserted between homology regions I and II, and V and VI. From their codon usage and third base pyrimidine bias, RNA polymerase genes RPA190, RPB220, RPC160, and RPC40 fall among yeast genes expressed at an average level. The RPA190 5'-flanking region contains features present in other polymerase genes that might function in regulation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号