首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions.  相似文献   

2.
A method is evaluated that employs variation in stable C and N isotopes from fractionations in C and N acquisition and growth to predict root biomasses of three plant species in mixtures. Celtis laevigata Willd. (C3), Prosopis glandulosa Torr. (C3, legume) and Schizachyrium scoparium (Michx.) Nash (C4), or Gossypium hirsutum L. (C3), Glycine max (L.) Merr. (C3 legume), and Sorghum bicolor (L.) Moench (C4) were grown together in separate, three-species combinations. Surface roots (0–10 cm depth) of each species from each of the two combinations were mixed in various proportions, and the relative abundances of 15N and 14N and 13C and 12C in prepared mixtures, surface roots of single species, and roots extracted from the 80-cm soil profile in which each species combination was grown were analyzed by mass spectrometry. An algebraic determination which employed the δ 13C, % 15N, and C and N concentrations of root subsamples of individual species accounted for more than 95% of the variance in biomass of each species in prepared mixtures with G. max, G. hirsutum, and S. bicolor. A similar analysis demonstrated species-specific differences in rooting patterns. Root biomasses of the C4 monocots in each combination, S. scoparium and S. bicolor, were concentrated in the upper 20 cm of soil, while those of G. hirsutum and the woody P. glandulosa were largest in lower soil strata. Analyses of stable C and N isotopes can effectively be used to distinguish roots of species which differ in ratios of 15N to 14N and 13C to 12C and thus to study belowground competition between or rooting patterns of associated species with different C and N isotope signatures. The method evaluated can be extended to quantify aboveground and belowground biomasses of component species in mixtures with isotopes of other elements or element concentrations that differ consistently among plants of interest.  相似文献   

3.
Abstract The diet of the harvester termite Hodotermes mossambicus was investigated at two sites with distinct dietary components: C4 grasses (δ13C isotope values, ?13.8‰ to ?14.0‰) and C3 plants (δ13C isotope values, ?25.6‰ to ?27.1‰). By comparing observations of food items carried into the colony by the termites and carbon isotope ratios of whole termites (that determined assimilated carbon), the relative proportion of the C3 and C4 plant food components of the termite diet was estimated. There was agreement between the observational data and stable carbon isotopic data, with grass representing approximately 93% of the diet of H. mossambicus at two study sites (urban and rural) on the South African highveld. However, when correcting for mass of food items, that is, C3 and C4, carried by termites, the proportion of grass (C4) in the diet may be underestimated.  相似文献   

4.
1. Recent stable isotope studies have revealed that C4 plants play a minor role in aquatic food webs, despite their often widespread distribution and production. We compared the breakdown of C3 (Eucalyptus) and C4 (Saccharum and Urochloa) plant litter in a small rain forest stream and used laboratory feeding experiments to determine their potential contribution to the aquatic food web. 2. All species of litter broke down at a fast rate in the stream, although Urochloa was significantly faster than Eucalyptus and Saccharum. This was consistent with the observed higher total organic nitrogen of Urochloa compared with the other two species. 3. The breakdown of Urochloa and Saccharum was, however, not associated with shredding invertebrates, which were poorly represented in leaf packs compared with the native Eucalyptus. The composition of the invertebrate fauna in packs of Urochloa quickly diverged from that of the other two species. 4. Feeding experiments using a common shredding aquatic insect Anisocentropus kirramus showed a distinct preference for Eucalyptus over both C4 species. Anisocentropus was observed to ingest C4 plant litter, particularly in the absence of other choices, and faecal material collected was clearly of C4 origin, as determined by stable isotope analysis. However, the stable carbon isotope values of the larvae did not shift away from their C3 signature in any of the feeding trials. 5. These data suggest that shredders avoid the consumption of C4 plants, in favour of native C3 species that appear to be of lower food quality (based on C : N ratios). Lower rates of consumption and lack of assimilation of C4 carbon also suggest that shredders may have a limited ability to process this material, even in the absence of alternative litter sources. Large scale clearing of forest and vegetation for C4 crops such as sugarcane will undoubtedly have important consequences for stream ecosystem function.  相似文献   

5.
Stomatal density, stomatal aperture length, area/leaf, and number of stomata/leaf were measured after the annual C3 agronomic grasses oats (Avena sativa) and wheat (Triticum aestivum), the C, woody legume honey mesquite (Prosopis glandulosa), and the perennial C4 grass little bluestem (Schizachyrium scoparium) were grown across a subambient carbon dioxide concentration ([CO2]) gradient from near 200 to 350 μmol/mol in a growth chamber. The purpose was to determine if the size and density of stomata vary in response to atmospheric [CO2] during growth, across a subambient [CO2] range representative of the doubling that has occurred since the last ice age. Changes in stomatal density and aperture length with increasing [CO2] were small when detected. Stomatal density decreased on adaxial flag leaf surfaces of wheat, and aperture length increased slightly with [CO2], Leaf area and number of stomata/flag leaf increased by similar proportions with [CO2] in two wheat cultivars. No consistent relationship between [CO2] and stomatal density or size was detected in mesquite, oats, or little bluestem. We conclude that individual plants of these species lack the plasticity to significantly alter stomatal density and aperture length in response to increasing atmospheric [CO2] in a single generation (annuals) or growing season (perennials).  相似文献   

6.
In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. 13C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C3) are recent components of former grasslands (C4), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.  相似文献   

7.
The non-graminaceous wild flora of Hungary was screened for C4 plants by using the stable carbon isotope ratio, the leaf anatomy and the photosynthetic carbon dioxide compensation concentration to determine the photosynthetic pathway type. On the whole, 31 C4 species (native or naturalized) were found in the Amaranthaceae, Chenopodiaceae, Cyperaceae, Euphorbiaceae, Portulacaceae and Zygophyllaceae families. Together with the 26 C4 grass species (Poaceae) reported earlier (Kalapos 1991), a total of 57 wild C4 species occur in Hungary, which forms 2.6 % of the country's angiosperm flora. This figure is somewhat higher than what was expected on climatic grounds, a fact probably due to certain edaphic conditions favouring C4 plant growth. In Hungary, the C4 species are predominantly annuals growing in open habitats such as dry grasslands, inland saline areas, temporarily exposed riverbeds and disturbed sites. In comparison with C3 plants, the C4 species have higher temperature and light preferences, and their phenology lags behind that of the C3 plants. These differences might account for C4 plants being usually excluded from productive biotopes in Hungary, where the C3 canopy may become closed during the growing season before C4 plants can start their ontogenetic development. Ecological properties of C3 and C4 plants differ considerably in the Cyperaceae, but much less in the Chenopodianceae family. Among C4 annuals naturalized aliens are common, most of which colonized hungary in the last two centuries. Increasing preponderance of C4 plants is anticipated in the future as a consequence of possible climate changes and the ever increasing human impact on terrestrial vegetation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Food habits of Arphia conspersa Scudder and Arphia pseudonietana (Thomas) were studied along an altitudinal transect in southeastern Wyoming shortgrass mixed prairie. Stable carbon isotope ratios indicated that diets were significantly different between study sites, between species, and between sexes. These differences were found to be primarily related to the availability of different food plants along the transect, although species with the C3 pathway of photosynthesis were consumed in greater proportion than their availability in the habitat. The preference for C3 species is presumably related to their higher nutritional value and digestibility, in spite of the fact that more time and energy must be spent to locate these food plants in some of the habitats studied. This study demonstrates the utility of the carbon isotope method in studying plant-animal interactions in habitats containing both C3 and C4 plants.  相似文献   

9.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

10.
Carbon isotope discrimination in C3-C4 intermediates   总被引:1,自引:1,他引:0  
Carbon isotope discrimination in C3–C4 intermediates is determined by fractionations during diffusion and the biochemical fractionations occurring during CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation occurring in the bundle sheath, the extent of bundle-sheath leakiness and the contribution which C4-cycle activity makes to the CO2 pool there. In most instances, carbon isotope discrimination in C3–C4 intermediates is C3-like because only a small fraction of the total carbon fixed is fixed in the bundle sheath. In particular, this must be the case for Flaveria intermediates which initially fix substantial amounts of CO2 into C4-acids. In C3–C4 intermediates that refix photorespiratory CO2 alone, it is possible for carbon isotope discrimination to be greater than in C3-species, particularly at low CO2 pressures or at high leaf temperatures. Short-term measurements of carbon isotope discrimination and gas exchange of leaves can be used to study the photosynthetic pathways of C3-C4 intermediates and their hybrids as has recently been done for C3 and C4 species.  相似文献   

11.
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.  相似文献   

12.
Numerous studies have explored the effect of environmental conditions on a number of plant physiological and structural traits, such as photosynthetic rate, shoot versus root biomass allocation, and leaf and root morphology. In contrast, there have been a few investigations of how those conditions may influence root respiration, even though this flux can represent a major component of carbon (C) pathway in plants. In this study, we examined the response of mass-specific root respiration (μmol CO2 g−1 s−1), shoot and root biomass, and leaf photosynthesis to clipping and variable soil moisture in two C3 (Festuca idahoensis Elmer., Poa pratensis L.) and two C4 (Andropogon greenwayi Napper, and Sporobolus kentrophyllus K. Schum.) grass species. The C3 and C4 grasses were collected in Yellowstone National Park, USA and the Serengeti ecosystem, Africa, respectively, where they evolved under temporally variable soil moisture conditions and were exposed to frequent, often intense grazing. We also measured the influence of clipping and soil moisture on specific leaf area (SLA), a trait associated with moisture conservation, and specific root length (SRL), a trait associated with efficiency per unit mass of soil resource uptake. Clipping did not influence any plant trait, with the exception that it reduced the root to shoot ratio (R:S) and increased SRL in P. pratensis. In contrast to the null effect of clipping on specific root respiration, reduced soil moisture lowered specific root respiration in all four species. In addition, species differed in how leaf and root structural traits responded to lower available soil moisture. P. pratensis and A. greenwayi increased SLA, by 23% and 33%, respectively, and did not alter SRL. Conversely, S. kentrophyllus increased SRL by 42% and did not alter SLA. F. idahoensis responded to lower available soil moisture by increasing both SLA and SRL by 38% and 33%, respectively. These responses were species-specific strategies that did not coincide with photosynthetic pathway (C3/C4) or growth form. Thus, mass-specific root respiration responded uniformly among these four grass species to clipping (no effect) and increased soil moisture stress (decline), whereas the responses of other traits (i.e., R:S ratio, SLA, SRL) to the treatments, especially moisture availability, were species-specific. Consequently, the effects of either clipping or variation in soil moisture on the C budget of these four different grasses species were driven primarily by the plasticity of R:S ratios and the structural leaf and root traits of individual species, rather than variation in the response of mass-specific root respiration.  相似文献   

13.
Determining how organisms partition or compete for resources within ecosystems can reveal how communities are assembled. The Late Pleistocene deposits at Rancho La Brea are exceptionally diverse in large mammalian carnivores and herbivores, and afford a unique opportunity to study resource use and partitioning among these megafauna. Resource use was examined in bison and horses by serially sampling the stable carbon and oxygen isotope values found within tooth enamel of individual teeth of seven bison and five horses. Oxygen isotope results for both species reveal a pattern of seasonal enamel growth, while carbon isotope values reveal a more subtle seasonal pattern of dietary preferences. Both species ate a diet dominated by C3 plants, but bison regularly incorporated C4 plants into their diets, while horses ate C4 plants only occasionally. Bison had greater total variation in carbon isotope values than did horses implying migration away from Rancho La Brea. Bison appear to incorporate more C4 plants into their diets during winter, which corresponds to previous studies suggesting that Rancho La Brea, primarily surrounded by C3 plants, was used by bison only during late spring. The examination of intra-tooth isotopic variation which reveals intra-seasonal resource use among bison and horse at Rancho La Brea highlights the utility of isotopic techniques for understanding the intricacies of ecology within and between ancient mammals.  相似文献   

14.
R.Z. Wang 《Photosynthetica》2004,42(4):511-519
Photosynthetic pathways (C3, C4, and CAM) and morphological functional types (e.g. shrubs, high perennial grasses, short perennial graminaceous plants, annual grasses, annual forbs, perennial forbs, halophytes, and hydrophytes) were identified for the species from salinity grasslands in Northeastern China, using the data from both stable carbon isotope ratios (13C) and from the references published between 1993 and 2002. 150 species, in 99 genera and 37 families, were found with C3 photosynthesis, and most of these species are dominants [e.g. Leymus chinensis (Trin.) Tzvel., Calamagrostis epigeios (L.), Suaeda corniculata (C.A. Mey.) Bunge]. 40 species in 25 genera and 8 families were identified with C4 photosynthesis [e.g. Chloris virgata Sw., Aeluropus littoralis (Gouan) Parlat] and 1 species with CAM photosynthesis. Gramineae is the leading family with C4 photosynthesis (27 species), Chenopodiaceae ranks the second (5 species). The significant increase of C4 proportions with intense salinity suggested this type plant is remarkable response to the grassland salinization in the region. 191 species were classified into eight morphological functional types and the changes of most of these types (e.g. PEF, HAL, and HPG) were consistent with habitats and vegetation dynamics in the saline grassland. My findings suggest that the photosynthetic pathways, combined with morphological functional types, are efficient means for studying the linkage between species and ecosystems in this type of saline grassland in Northeastern China.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

15.
For 383 Poaceae species harvested over the Japanese islands and stored as herbarium specimens along several decades, we determined C3 and C4 types of photosynthesis from leaf stable carbon isotope ratio (δ13C). Then, we sought the relationships between C4 species richness and climatic factors or habitat types. Except for the two Panicum species (P. lanuginosum and P. scoparium) having the possibility of C3–C4 intermediate, 227 and 154 species were classified into C3 and C4. The C4 species richness increased from northern to southern islands in Japan, positively correlated with mean annual air temperature. Greater C4 species richness in the seashore habitats, and smaller C4 species richness in the shaded, wet and highland habitats would be related to the photosynthetic responses to local environmental factors such as irradiance level and temperature regime. No difference of leaf δ-value of C3 Poaceae was obtained between the habitats with different soil water availability, suggesting the less importance of soil water availability on leaf water-use efficiency in C3 Poaceae species in Japan having humid climate. Additionally, possible effects of human activity around the harvested time or site on leaf δ-value were estimated, because the habitat includes the sites with high human activity. Leaf δ-value was decreased with sampling year, and it was higher in the densely inhabited district for both C3 and C4. They are probably due to a historical decrease in the atmospheric δ-value via increasing human activity, and high gas emission at the districts of high human density.  相似文献   

16.
Methods to trace source habitats and movement of parasitic natural enemies in agroecosystems are limited. This study demonstrates that stable carbon isotope analysis offers a valuable new method for revealing the movement of Microplitis mediator (Haliday) (Hymenoptera: Braconidae), a larval endoparasitoid of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), between C3 and C4 plants. Results indicate that M. mediator with δ13C values of lower than −22‰ originate from a C3 plant, whereas those with δ13C values of higher than −19‰ develop on a C4 plant.  相似文献   

17.
The photosynthetic responses of a range of trebouxioid lichens were investigated to determine whether variations in net assimilation rates shown by populations of the same species collected from different habitats could be correlated with adjustments in carbon-concentrating mechanism (CCM) activity. The activity of a CCM was inferred from the high affinity for CO2 [i.e. low CO2 compensation point (Γ); low external CO2 concentration at which half-maximal assimilation rates are reached (K 0.5 CO2)], the release of a pool of accumulated dissolved inorganic carbon (Ci) during light/dark transient measurements of CO2 exchange and values for carbon isotope discrimination intermediate between those characteristic of C3 and C4 terrestrial plants. Higher net and gross assimilation rates were expressed by lichens collected from shaded woodland habitats. The higher rates were not accounted for by variations in chlorophyll content. Lichens with high assimilation rates also showed an increased affinity for CO2 as demonstrated by low CO2 compensation points and K 0.5 values and the magnitude of the Ci pool accumulated upon illumination and released after darkening of the thalli. However, there was no correlation between assimilation rates and organic matter or instantaneous carbon isotope discrimination measurements, with the latter remaining roughly consistent whatever the provenance or species of the lichen material. The data are discussed with reference to significant environmental factors which are likely to control photosynthesis in the habitats studied. Received: 5 April 1997 / Accepted: 9 September 1997  相似文献   

18.
The relative carbon isotope content (δ13C value) in each position of glucose from a C4 plant (maize starch) and a C3 plant (sugar beet sucrose) has been determined by stepwise chemical and biochemical degradation of the molecule and stable isotope ratio measurement of the fragments. The suitability of the degradation methods has been tested through their chemical yield and isotope balance. The results from both methods agreed perfectly, revealing a defined and reproducible 13C distribution in glucose from both origins. Most prominent was a relative 13C enrichment by 5 to 6 δ-units in position 4 and a depletion by about 5 δ-units in carbon 6. As possible reasons for these nonstatistical isotope distributions, isotope effects of the aldolase, the triose phosphate isomerase, and the transketolase reactions during carbohydrate biosynthesis are discussed. The practical importance of the results in regard to isotope distributions in secondary plant products as a means for food authenticity control is outlined.  相似文献   

19.
Summary 13C values were measured for 45 Poaceae species collected in the northern Sahara desert, at the foot of the Saharan Atlas. The results indicate a clear relationship between carbon isotope discrimination and phytogeographical distribution of the grasses. Mediterranean species predominantly had 13C values indicating the C3 pathway of photosynthesis. By contrast, nearly all species belonging to the Saharo-Arabian and /or Sudanian group showed a C4 like carbon isotope composition. Leaf material of two species, Lygeum spartum and Stipa tenacissima, had 13C values in the region of-20, i.e. intermediate between the mean 13C values of C3 and C4 plants. However, additional speciments of both these grasses obtained from a different source (herbarium of the Hebrew University, Jerusalem) yielded a C3 like carbon isotope composition.  相似文献   

20.
Atmospheric CO2 (Ca) concentration has increased significantly during the last 20 000 years, and is projected to double this century. Despite the importance of belowground processes in the global carbon cycle, community‐level and single species root responses to rising Ca are not well understood. We measured net community root biomass over 3 years using ingrowth cores in a natural C3–C4 grassland exposed to a gradient of Ca from preglacial to future levels (230–550 μmol mol?1). Root windows and minirhizotron tubes were installed below naturally occurring stands of the C4 perennial grass Bothriochloa ischaemum and its roots were measured for respiration, carbohydrate concentration, specific root length (SRL), production, and lifespan over 2 years. Community root biomass increased significantly (P<0.05) with Ca over initial conditions, with linear or curvilinear responses depending on sample date. In contrast, B. ischaemum produced significantly more roots at subambient than elevated Ca in minirhizotrons. The lifespan of roots with five or more neighboring roots in minirhizotron windows decreased significantly at high Ca, suggesting that after dense root growth depletes soil resource patches, plants with carbon surpluses readily shed these roots. Root respiration in B. ischaemum showed a curvilinear response to Ca under moist conditions in June 2000, with the lowest rates at Ca<300 μmol mol?1 and peak activity at 450 μmol mol?1 in a quadratic model. B. ischaemum roots at subambient Ca had higher SRLs and slightly higher carbohydrate concentrations than those at higher Ca, which may be related to drier soils at low Ca. Our data emphasize that belowground responses of plant communities to Ca can be quite different from those of the individual species, and suggest that complex interactions between and among roots and their immediate soil environment influence the responses of root physiology and lifespan to changing Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号