首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of [3H]deoxyuridine by the active nucleoside transport system into the isolated rabbit choroid plexus was measured in vitro under various conditions. Choroid plexuses were incubated in artificial CSF containing 1 microM [3H]deoxyuridine and 1 microM nitrobenzylthioinosine for 5 min under 95% O2-5% CO2 at 37 degrees C and the accumulation of [3H]deoxyuridine measured. Nitrobenzylthioinosine was added to the artificial CSF at a concentration (1 microM) that did not inhibit the active nucleoside transport system but did inhibit the separate, saturable nucleoside efflux system. The active transport of deoxyuridine into the choroid plexus depended on Na+ in the medium, as ouabain, substitution of Li+ and choline for Na+, and poly-L-lysine all inhibited deoxyuridine transport. Thiocyanate in place of chloride and penetrating sulfhydryl reagents also inhibited the active transport of deoxyuridine into choroid plexus. The active transport of deoxyuridine into choroid plexus, which is inhibited by naturally occurring ribo- and deoxyribonucleosides (IC50 = 7-21 microM), was not inhibited (IC50 much greater than 150 microM) by nucleosides with certain alterations on the 2', 3', or 5' positions in D-ribose or 2-deoxy-D-ribose (e.g., adenine arabinoside, 3'-deoxyadenosine, xylosyladenosine); or the pyrimidine or purine rings (e.g., 6-azauridine, xanthosine, 7-methylinosine, or 8-bromoadenosine). Other analogues were effective (IC50 = 8-26 microM; e.g., 5-substituted pyrimidine nucleosides, 7-deazaadenosine, 6-mercaptoguanosine) or less effective (IC50 = 46-145 microM; e.g., 5-azacytidine, 3-deazauridine) inhibitors of deoxyuridine transport into the isolated choroid plexus.  相似文献   

2.
Abstract: Adrenomedullin is a potent vasodilator peptide that was originally isolated from pheochromocytoma. The production and secretion of adrenomedullin by cultured choroid plexus carcinoma cells were studied by radioimmunoassay and northern blot hybridization. Choroid plexus carcinoma is a rare malignant tumor derived from the epithelium of the choroid plexus. Immunoreactive adrenomedullin was detected in the conditioned medium of choroid plexus carcinoma cells (40.8 ± 7.5 fmol/105 cells/24 h; mean ± SEM, n = 5). Reverse-phase HPLC of the conditioned medium showed one major peak of the immunoreactive peptide eluting in the position of synthetic human adrenomedullin and two smaller peaks eluting earlier. Addition of interleukin-1β (10 ng/ml) alone or in combination with three cytokines, interferon-γ (100 U/ml), tumor necrosis factor-α (20 ng/ml), and interleukin-1β (10 ng/ml), caused significant increases in the immunoreactive adrenomedullin concentrations in the medium (∼175 and 293% of the control level, respectively). Northern blot analysis showed the expression of 1.6-kb adrenomedullin mRNA in the total RNA sample prepared from cultured choroid plexus carcinoma cells. Treatment with either interleukin-1β or the combination of three cytokines caused significant increases in levels of adrenomedullin mRNA in parallel with those in immunoreactive adrenomedullin concentrations in the conditioned medium. These findings raise a possibility that adrenomedullin is secreted from the choroid plexus and has physiological roles in the CNS via the CSF. In addition, adrenomedullin secreted from choroid plexus carcinoma may be related to the pathophysiology of the tumor.  相似文献   

3.
The transport into and release of14C-labeled niacin and niacinamide from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated 14C by specific, energy-dependent mechanisms when [14C]niacinamide was added to the incubation medium. The saturable accumulation velocities, which were linear for 30 min, depended, in part, on incorporation of the [14C]niacinamide into NAD. The XT and Ymax for 14C accumulation with [14C]niacinamide in the medium by brain slices and choroid plexus were 0.80 μM and 1.45 μmolkg?1 (30 min)?1, and 0.23 μM and 18.6 μmol kg?1 (30 min)?1 respectively. In vitro, the choroid plexus, unlike brain slices, vigorously concentrated 14C by a separate, specific energy-dependent process when 14C niacin was added to the incubation medium. The saturable accumulation velocity, which was linear for 30 min, depended completely on the metabolism of [14C]niacin. The KT and Ymax for14C accumulation by choroid plexus with [14C]niacin in the medium were 18.1 μM and 439 μmol kg?1 (30 min)?1 respectively. Whether preincubated in [14C]niacin or [14C]niacinamide, choroid plexus released predominantly [14C]niacinamide.  相似文献   

4.
Summary Light (LM-ARG) and electron microscope (EM-ARG) autoradiographs were prepared from immature rat choroid plexus and ependyma at 5, 10, 30, and 60 min and 16 h following intraperitoneal administration of [3H]- labeled amino acid mixtures. Intracellular protein synthesis and transport were ascertained in lateral and fourth ventricle choroid plexus epithelium by quantitative EM-ARG at the several post-injection intervals. ARG were also prepared from choroid plexuses cultured for one day, pulse labeled for one hour and reincubated for various periods in nonradioactive media. Significant labeling of both attached and free apical protrusions (blebs) was observed in both choroid plexus and ependyma in vivo and in choroid plexus in vitro. This phenomenon was interpreted as a physiologically significant mechanism for protein transport (apocrine secretion) by epithelia into the cerebrospinal fluid (CSF).This study was supported in part by N.I.H. Research Grant NS 12906  相似文献   

5.
An active guanylate cyclase system was detected in isolated choroid plexus of rabbits by sodium azide (6 × 10?5 mol/l) which increased cGMP levels tenfold within 15 min. Inhibition of cGMP phosphodiesterase by sodium azide was excluded. cGMP accumulation was also raised dose-dependently by carbamylcholine, a cholinergic agonist. Pretreatment of chroid plexus with atropine (10?7 mol/l) reduced the effect of carbamylcholine (5 × 10?5 mol/l) by 80%. Both carbamylcholine and sodium azide induced accumulation of cGMP also in the incubation medium, indicating rapid extrusion of the nucleotide from choroid plexus cells. The effect of carbamylcholine could be mimicked by the calcium ionophore A 23187. Incubation in calcium-free medium abolished cGMP accumulation by carbamylcholine and A 23187 but not by sodium azide, indicating a different mechanism of action. Sodium azide, carbamylcholine and A 23187 had no effect on cyclic AMP levels. Withdrawal of calcium led to an enhanced efflux of both cAMP and cGMP. Since a cholinergic innervation of stroma and epithelial cells has been described, we hypothesize that cGMP and calcium may be involved in cholinergic transmission regulating blood flow or transport processes of the choroid plexus.  相似文献   

6.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

7.
8.
The choroid plexus is a major site of CSF production. When primary cultures of bovine choroid plexus epithelial cells were exposed to 1 micrograms/ml cholera toxin, a 50-fold increase of intracellular cyclic AMP was found 1 h later. Exposure of cells to 10(-5) M isoproterenol, 10(-4) M prostaglandin E1, 10(-5) M histamine, and 10(-5) M serotonin caused increases of intracellular cyclic concentrations of 100-, 50-, 20-, and 4-fold, respectively. From 5 to 15 min were required for these maximal responses to occur. Many other molecules including prolactin, vasopressin, and corticotropin did not alter cellular cyclic AMP levels. The accumulation of cyclic AMP could be inhibited by specific antagonists: propranolol inhibited the isoproterenol-mediated stimulation while diphenhydramine and metiamide inhibited the histamine response. In addition, diphenhydramine inhibited serotonin-dependent cyclic AMP accumulation. Combinations of isoproterenol, prostaglandin E1, histamine, and serotonin elicited additive responses as measured by cyclic AMP accumulation with one exception, i.e., serotonin inhibited the histamine response. Our findings suggest that distinct receptor sites on choroid plexus epithelia exist for isoproterenol, prostaglandin E1, and histamine. Efflux of cyclic AMP into the extracellular medium was found to be a function of the intracellular cyclic AMP levels over a wide range of concentrations. Our studies provide direct evidence for hormonal regulation of cyclic AMP metabolism in epithelial cells of the choroid plexus.  相似文献   

9.
In vitro, the transport of [14C]riboflavin into and from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [14C]riboflavin of 0.7 microM (or greater) in the incubation medium, the choroid plexus accumulated [14C]riboflavin against a large concentration gradient by a process that did not depend on binding or intracellular metabolism of the [14C]riboflavin. The [14C]riboflavin accumulation process in isolated choroid plexus could be described by Michaelis-Menten transport kinetics (kt = 78 microM and Ymax = 1.65 mmol kg-1 (15 min)-1) and was inhibited by other flavins and probenecid but not by ribose, weak bases, or other B vitamins. The accumulation process was markedly depressed by iodoacetate and low temperatures. With a concentration of 0.08 microM [14C]riboflavin in the incubation medium, 28% of the [14C]riboflavin within the choroid plexus was converted to [14C]FAD or [14C]FMN intracellularly. Unlike the active transport of [14C]riboflavin into choroid plexus, accumulated [14C]riboflavin departed choroid plexus by a process independent of intracellular concentration or temperature. The efflux of [14C]riboflavin from choroid plexus could be described by first oder kinetics with a rate constant of -0.08 min-1.  相似文献   

10.
1. Transient forebrain ischemia in adult rats, induced by 10 min of bilateral carotid occlusion and an arterial hypotension of 40 mmHg, caused substantial damage not only to CA-1 neurons in hippocampus but also to epithelial cells in lateral ventricle choroid plexus.2. When transient forebrain ischemia was followed by reperfusion (recovery) intervals of 0 to 12 hr, there was moderate to severe damage to many frond regions of the choroidal epithelium. In some areas, epithelial debris was sloughed into cerebrospinal fluid (CSF). Although some epithelial cells were disrupted and necrotic, their neighbors exhibited normal morphology. This patchy response to ischemia was probably due to regional differences in reperfusion or cellular metabolism.3. Between 12 and 24 hr postischemia, there was marked restoration of the Na+, K+, water content, and ultrastructure of the choroid plexus epithelium. Since there was no microscopical evidence for mitosis, we postulate that healthy epithelial cells either were compressed together on the villus or migrated from the choroid plexus stalk to more distal regions, in order to fill in gaps along the basal lamina caused by necrotic epithelial cell disintegration.4. Epithelial cells of mammalian choroid plexus synthesize and secrete many growth factors and other peptides that are of trophic benefit following injury to regions of the cerebroventricular system. For example, several growth factors are upregulated in choroid plexus after ischemic and traumatic insults to the central nervous system.5. The presence of numerous types of growth factor receptors in choroid plexus allows growth factor mediation of recovery processes by autocrine and paracrine mechanisms.6. The capability of choroid plexus after acute ischemia to recover its barrier and CSF formation functions is an important factor in stabilizing brain fluid balance.7. Moreover, growth factors secreted by choroid plexus into CSF are distributed by diffusion and convection into brain tissue near the ventricular system, e.g., hippocampus. By this endocrine-like mechanism, growth factors are conveyed throughout the choroid plexus–CSF–brain nexus and can consequently promote repair of ischemia-damaged tissue in the ventricular wall and underlying brain.  相似文献   

11.
Agonist-Induced Phosphoinositide Hydrolysis in Choroid Plexus   总被引:3,自引:1,他引:2  
Abstract: 5-Hydroxytryptamine (5-HT, serotonin) stimulates phosphoinositide hydrolysis in choroid plexus by interacting with the 5-HTlc site. In the present study, the effects of 5-HT were compared with those of other agonists. 5-HT stimulates a rapid release of all three inositol sugars in a mianserin-sensitive manner. Inositol bisphosphate and inositol trisphosphate levels increase about twofold within 2.5 min, whereas inositol monophosphate levels are not appreciably elevated until 5 min. In contrast, glutamate, carbachol, histamine, substance P, and vasopressin, agents that increase phosphoinositide hydrolysis in other tissues, do not stimulate this response in choroid plexus. High concentrations of norepinephrine increase inositol phosphate release in choroid plexus, but this effect is apparently mediated by activation of the 5-HTlc site. The depolarizing agents KCl and veratrine also fail to stimulate phosphoinositide hydrolysis in choroid plexus. These results, combined with the finding that the phosphoinositide response to 5-HT is insensitive to tetrodotoxin, suggest that the effects of 5-HT are not secondary to neurotransmitter release. Furthermore, an indirect effect mediated via arachidonic acid metabolism is unlikely, since inhibitors of cyclooxygenase and lipoxygenase do not reduce the 5-HT response. We conclude, therefore, that phosphoinositide hydrolysis is the transducing mechanism of the 5-HT 5-HTlc receptor and that the choroid plexus will serve as a useful model system for studies of this receptor.  相似文献   

12.
The purpose of this study was to determine absolute protein expression levels of transporters in rat choroid plexus, that is, the blood–cerebrospinal fluid barrier, and to compare them with the levels in the human choroid plexus. Plasma membrane fractions were prepared from pooled, freshly isolated choroid plexuses of 30 male Wistar rats and from frozen choroid plexus of one male human donor. Protein expression levels of 54 rat and 121 human molecules were measured, using a quantitative targeted absolute proteomics technique. In rat, oatp1a5 showed the most abundant protein expression (30.3 fmol/μg protein), and its expression level was 3.1‐, 4.5‐, 5.5‐, 8.4‐, 9.0‐, 9.9‐, 22‐, 91‐, and 95‐fold greater than those of glut1, oatp1c1, mrp1, mct1, oat3, pept2, mrp4, bcrp, and mdr1a, respectively. OATP1A2 (a possible homolog of rat oatp1a5), OATP1C1 and PEPT2 were not detected in human choroid plexus. MRP1, OAT3, and MRP4 showed 4.0‐, 1.8‐, and 1.7‐fold smaller expression levels in human than rat, respectively. MATE1 was detected in human, but not rat, and its expression level (8.61 fmol/μg protein) was the highest among the xenobiotic transporters examined in human choroid plexus. These findings should be useful for understanding rat blood–cerebrospinal fluid barrier function and its differences from that in human.

  相似文献   


13.
Synthesis of total protein and of transthyretin in rat choroid plexus was studied by measuring the incorporation of radioactive leucine into proteins in choroid plexus tissue incubated in vitro. About 20% of the protein newly synthesized in choroid plexus and about 50% of the newly synthesized protein secreted into the medium was transthyretin. Evidently, the choroid plexus is very active in the biosynthesis of this carrier protein for thyroid hormones and could be an important link in the chemical communication between the body and the central nervous system. Acute inflammation, which leads to a profound rearrangement of the pattern of plasma protein synthesis rates in the liver, produced distinct changes in the levels for plasma protein mRNAs in the liver. The levels of the mRNAs for alpha 1-acid glycoprotein and major acute phase alpha 1-protein increased more than 30-fold, those for transthyretin and albumin decreased to 27 and 57% of normal, respectively. The pattern of the observed changes in the levels of mRNAs for plasma proteins in the liver was independent of whether the acute inflammation was produced by subcutaneous injection of turpentine or intraperitoneal injection of a suspension of talcum. However, levels of transthyretin mRNA in choroid plexus were affected only very slightly, or not at all. Apparently, transthyretin synthesis in liver and choroid plexus is regulated independently during the acute phase response. No mRNA was detected in choroid plexus for albumin, alpha 1-acid glycoprotein, and major acute phase alpha 1-protein under any conditions.  相似文献   

14.
C P Chen  C Wagner 《Life sciences》1975,16(10):1571-1581
The uptake of 5-methyltetrahydrofolic acid (5-MTHF) by the isolated choroid plexus of hog was studied and shown to be both temperature and time dependent. Uptake of 5-MTHF by the isolated choroid plexus was a saturable process and exhibited a Kt of 0.9 × 10−6M and Vmax of 1.39 nmole/gm dry wt/min. The system did not require the presence of sodium ion nor was it ouabain sensitive. The presence of metabolic inhibitors, e.g., 2,4-dinitrophenol, did not suppress the uptake rate. Deprivation of oxygen also did not affect the rate of 5-MTHF transport. Addition of folic acid to the incubating medium led to countertransport of intracellular 5-MTHF. Efflux studies also indicated that the majority of the intracellular 5-MTHF was rapidly exchangeable and therefore probably present in the cell water in a free state. Chromatographic analyses confirmed that 5-MTHF was not metabolically altered during the transport process. It is suggested that 5-methyltetrahydrofolic acid is transported in the isolated choroid plexus via a carrier-mediated process.  相似文献   

15.
Cholera toxin was found to induce high accumulations of cyclic AMP in the isolated choroid plexus of the rabbit and in the incubation medium. The accumulation showed a characteristic lag phase of at least 30 min and continued for at least 3 hours. Inactivated cholera toxin was unable to increase cyclic AMP levels. There was only a moderate effect of cholera toxin on cyclic AMP “low Km” phosphodiesterase activity in homogenates. The effect of cholera toxin on cyclic AMP levels confirms the existance of a potent cyclic AMP generating system in the choroid plexus which is activated also by β-adrenergic agonists, histamine and prostaglandin E1.  相似文献   

16.
17.
Our aim was to assess biochemical parameters to detect choroid plexus dysfunction in Kearns–Sayre syndrome (KSS) patients. We studied CSF from 7 patients with KSS including total proteins, 5-methyltetrahydrofolate, homovanillic acid (HVA) and Selenium (Se) concentrations. High Se values, increased HVA and total protein concentrations and decreased 5-MTHF values were observed in all cases. This pattern seems very specific to KSS since it was only detected in 7 patients out of 1850 CSF samples analysed, and may represent a good biochemical model for evaluating choroid plexus dysfunction. The accumulated Se in CSF might have deleterious consequences such as toxicity effects.  相似文献   

18.
The presence of multiple oligopeptide transporters in brain has generated considerable interest as to their physiological role in neuropeptide homeostasis, pharmacologic importance, and potential as a target for drug delivery through the blood-brain and blood-cerebrospinal fluid barriers. To understand further the purpose of specific peptide transporters in brain, we have generated PEPT2-deficient mice by targeted gene disruption. Homozygous PepT2 null mice lacked expression of PEPT2 mRNA and protein in choroid plexus and kidney, tissues in which PepT2 is normally expressed, whereas heterozygous mice displayed PepT2 expression levels that were intermediate between those of wild-type and homozygous null animals. Mutant PepT2 null mice were found to be viable, grew to normal size and weight, and were without obvious kidney or brain abnormalities. Notwithstanding the lack of apparent biological effects, the proton-stimulated uptake of 1.9 microm glycylsarcosine (a model, hydrolysis-resistant dipeptide) in isolated choroid plexus was essentially ablated (i.e. residual activity of 10.9 and 3.9% at 5 and 30 min, respectively). These novel findings provide strong evidence that, under the experimental conditions of this study, PEPT2 is the primary member of the peptide transporter family responsible for dipeptide uptake in choroid plexus tissue.  相似文献   

19.
Summary The binding of intravenously administered prolactin to choroid plexus and brain tissue was determined radioautographically in the ring dove, a species that exhibits prolactin-induced alterations in brain function. An intense autoradiographic reaction was detected over the epithelial cells of the choroid plexus 5 min after the intravenous injection of 125I-ovine prolactin. A significant reaction was also observed over the infundibulum but no significant uptake of prolactin occurred in other brain areas. The binding of radiolabelled prolactin to infundibulum appeared to be non-specific, since excess unlabelled hormone did not reduce silver grain density. In contrast, 125I-ovine prolactin binding in choroid plexus was significantly reduced by excess unlabelled ovine prolactin or human growth hormone, but not by ovine luteinizing hormone. Specific binding to choroid plexus was also detected in vitro. The lack of significant brain uptake of prolactin in vivo is discussed in relation to recent in vitro evidence for specific binding sites for prolactin in several dove brain regions. Similarities between the binding results obtained in this avian species and those reported previously in mammals suggest that the two vertebrate groups exhibit similar patterns of prolactin interaction with neural target tissues.  相似文献   

20.
Thyroxine transport in choroid plexus   总被引:4,自引:0,他引:4  
The role of the choroid plexus in thyroid hormone transport between body and brain, suggested by strong synthesis and secretion of transthyretin in this tissue, was investigated in in vitro and in vivo systems. Rat choroid plexus pieces incubated in vitro were found to accumulate thyroid hormones from surrounding medium in a non-saturable process. At equilibrium, the ratio of thyroid hormone concentration in choroid plexus pieces to that in medium decreased upon increasing the concentration of transthyretin in the medium. Fluorescence quenching of fluorophores located at different depths in liposome membranes showed maximal hormone accumulation in the middle of the phospholipid bilayer. Partition coefficients of thyroxine and triiodothyronine between lipid and aqueous phase were about 20,000. After intravenous injection of 125I-labeled thyroid hormones, choroid plexus and parts of the brain steadily accumulated 125I-thyroxine, but not [125I]triiodothyronine, for many hours. The accumulation of 125I-thyroxine in choroid plexus preceded that in brain. The amount of 125I-thyroxine in non-brain tissues and the [125I]triiodothyronine content of all tissues decreased steadily beginning immediately after injection. A model is proposed for thyroxine transport from the bloodstream into cerebrospinal fluid based on partitioning of thyroxine between choroid plexus and surrounding fluids and binding of thyroxine to transthyretin newly synthesized and secreted by choroid plexus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号