首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcaligenes latus, Alcaligenes eutrophus, Bacillus cereus, Pseudomonas pseudoflava, Pseudomonas cepacia, and Micrococcus halodenitrificans were found to accumulate poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acid [P(HB-co-HV)] copolymer when supplied with glucose (or sucrose in the case of A. latus) and propionic acid under nitrogen-limited conditions. A fed-batch culture of A. eutrophus produced 24 g of poly-beta-hydroxybutyric acid (PHB) liter-1 under ammonium limitation conditions. When the glucose feed was replaced with glucose and propionic acid during the polymer accumulation phase, 17 g of P(HB-co-HV) liter-1 was produced. The P(HB-co-HV) contained 5.0 mol% beta-hydroxyvaleric acid (HV). Varying the carbon-to-nitrogen ratio at a dilution rate of 0.15 h-1 in a chemostat culture of A. eutrophus resulted in a maximum value of 33% (wt/wt) PHB in the biomass. In comparison, A. latus accumulated about 40% (wt/wt) PHB in chemostat culture under nitrogen-limited conditions at the same dilution rate. When propionic acid was added to the first stage of a two-stage chemostat, A. latus produced 43% (wt/wt) P(HB-co-HV) containing 18.5 mol% HV. In the second stage, the P(HB-co-HV) increased to 58% (wt/wt) with an HV content of 11 mol% without further addition of carbon substrate. The HV composition in P(HB-co-HV) was controlled by regulating the concentration of propionic acid in the feed. Poly-beta-hydroxyalkanoates containing a higher percentage of HV were produced when pentanoic acid replaced propionic acid.  相似文献   

2.
对Alcaligenes eutrophus进行高密度培养,研究表明在发酵过程中进行有效控制,可以较大幅度地提高3-羟基丁酸和3-羟基戊酸共聚物[P(3HB-co-3HV)]的生产强度。实验中选择使用限氮的方法积累P(3HB-co-3HV),分别采用丙酸和戊酸为3HV前体,对摇瓶种子生长状态,停氮时机对菌体生产P(3HB-co-3HV)的影响以及补酸(3HV前体)策略进行了研究,在6.6L罐中,以葡萄糖为碳源,以丙酸为3HV前体培养50h,细胞干重,PHA产量,PHA含量分别达到149.9g/L,149.9g/L,83.3%(其中3HV组分占PHA的12.4mol%),生产强度达到2.50(g.h^-1.L^-1);以戊酸为3HV前体培养45h,细胞干重,PHA产量,PHA含量分别达到160.2g/L,119.0g/L,74.2%(其中3HV组分占PHA的17.7mol%)生产强度达到2.64(g.h^-1.L^-1)。  相似文献   

3.
A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.  相似文献   

4.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

5.
S Slater  T Gallaher    D Dennis 《Applied microbiology》1992,58(4):1089-1094
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

6.
A novel strategy for the maximum production of a biodegradable copolymer, poly(3-hydroxybutyric-co-hydroxyvaleric) acid, P(HB-co-HV), was developed, based on the kinetic parameters obtained from fed-batch culture experiments of Alcaligenes eutrophus. The effects of various culture conditions such as mole ratio of carbon:nitrogen in feed medium (C/N); total fatty acids concentrations; and addition ratio of fatty acids on cultivation properties such as the specific rates of cell formation, mu (h-1), P(HB-co-HV) production, rho[g.P(HB-co-HV)/g.cell/h], production yield from fatty acids [g.P(HB-co-HV)/g.fatty acid], and mole fraction of monomeric units in the copolymer [mol.(HV)/{mol.(HB) + mol.(HV)}], were investigated. When nitrogen supply was sufficient for cell growth; that is, C/N (mol.nitrogen atom/mol.carbon atom) was low, mu was high, but rho and the production yield were low, because fatty acids were used mainly for energy formation and anabolic reactions in the cells. On the other hand, when nitrogen supply was limited for cell growth-that is, C/N was high-rho was high. The highest value of rho was obtained when C/N was 75. As the mole ratio of valeric acid (VA) to butyric acid (BA) in the feed medium was increased, the mole fraction of HV units in P(HB-co-HV) increased linearly. When the ratio of BA to VA in the feed medium was kept at a constant value, but C/N was increased, the mole fraction of HV units decreased. In particular, when C/N was >12, the mole fraction of HV units decreased linearly as C/N increased. When VA was utilized as the sole carbon source and C/N was fixed at 4, P(HB-co-HV) with the highest mole fraction of HV units (67 mol%) was achieved. From these results, it was shown that both C/N and the mole ratio of BA to VA in the feed medium should be well controlled for an optimal production of P(HB-co-HV) with the desired value of the mole fraction of HV units. When the addition ratio of butyric acid was 50 wt% of total fatty acids, a maximum production strategy for P(HB-co-HV) was developed and realized experimentally, which was based on a model of the relationship between mu and rho.  相似文献   

7.
An Escherichia coli strain has been constructed that produces the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(HB-co-HV). This has been accomplished by placing the PHB biosynthetic genes from Alcaligenes eutrophus into an E. coli fadR atoC(Con) mutant and culturing the strain in M9 minimal medium containing glucose and propionate. 3-Hydroxyvalerate incorporation is absolutely dependent on the presence of both glucose and propionate, and 3-hydroxybutyrate-3-hydroxyvalerate ratios in the copolymer can be manipulated by altering the propionate concentration and/or the glucose concentration in the culture. P(HB-co-HV) production can be accomplished by using a wide variety of feeding regimens, but the most efficient is to allow the culture to grow to late log phase in minimal medium containing acetate and then add glucose and propionate to initiate copolymer production. A broad range of propionate concentrations can be used in the culture to stimulate 3-hydroxyvalerate incorporation; however, the most efficient utilization of propionate occurs at concentrations below 10 mM. 3-Hydroxyvalerate molar percentages in the copolymer are relatively constant over the course of growth. The copolymer has been purified and confirmed to be P(HB-co-HV) by gas chromatography/mass spectrometry and differential scanning calorimetry.  相似文献   

8.
The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.  相似文献   

9.
Wheat starch granules and poly-(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(HB-co-HV), (19.1 mol% HV)] were blended at 160 degrees C. Increasing the starch content from 0 to 50% (wt/wt) decreased the tensile strength of P(HB-co-HV) from 18 MPa to 8 MPa and diminished flexibility as Young's modulus increased from 1,525 MPa to 2,498 MPa, but overall mechanical properties of the polymer remained in a useful range. A mixed microbial culture required more than 20 days to degrade 150-microns-thick samples of 100% P(HB-co-HV), whereas samples containing 50% (wt/wt) starch disappeared in fewer than 8 days. Starch granules degraded before P(HB-co-HV) did. Aerobic degradation proceeded more rapidly than anaerobic degradation.  相似文献   

10.
The biosynthesis of P(3HB-3HV) and P(3HB-4HB) was carried out using transformants of Alcaligenes eutrophus harboring the cloned phbCAB, phbAB, and phbC genes. The molar fractions and yields of 3HV and 4HB increased significantly by enhancing enzymes related to PHB biosynthesis compared to the parent strain. Especially, PHB synthase was the most critical enzyme that regulated monomer compositions of P(3HB-3HV) and P(3HB-4HB) in the transformant. Even at the lower propionate or 4-hydroxybutyrate concentrations, the high molar fractions of 3HV or 4HB could be accumulated. The enforcement of PHB biosynthetic enzymes through the transformation of corresponding genes was identified to be an excellent method for modification of monomer composition of copolymer of A. eutrophus.  相似文献   

11.
The addition of poly(ethylene glycol) (Mn = 200 g/mol) (PEG-200) to the fermentation media of Alcaligenes eutrophus and Alcaligenes latus at various stages of growth resulted in the synthesis of poly(3-hydroxybutyrate) (PHB) with bimodal molecular weight distributions. The presence of 2% w/v-PEG-200 did not have deleterious effects on PHB volumetric yields and cell productivity. In general, the Mn values of the high (H) and low (L) fractions showed little variability as a function of the time at which PEG-200 was added to the cultures. By this approach, the H:L ratios (w/w) of the PHB synthesized by A. eutrophus and A. latus were varied from 9:91 to 76:24 and from 16:84 to 88:12, respectively. It is believed that the H fractions were formed prior to the addition of PEG-200 to the cultures. Also, once PEG-200 was made available to the cells, PEG-200 acted as a switch so that the reduced molecular weight fraction was formed. In addition, a necessary requirement for the above is that the frequency of transesterification reactions during polymer synthesis was small. The efficiency that PEG-200 reduced the molecular weight of the PHBs formed by both bacteria appears similar. Indirect evidence suggests that the PHB L fractions formed by A. latus subsequent to PEG-200 addition consist primarily of chains that have PEG terminal groups. This terminal chain structure was not observed for PHB formed by A. eutrophus.  相似文献   

12.
Summary The effect of propionic acid on poly(-hydroxybutyric-co--hydroxyvaleric)acid P(HB-co-HV) copolymer production byAlcaligenes eutrophus ATCC 17699 supplied with fructose and propionic acid under nitrogen limited conditions was studied. The growth ofA. eutrophus was almost completely inhibited when the concentraion, of propionic acid exceeds 1.5 g/L. Specific production rate of HV unit was highest when propionic acid concentration was 0.5 g/L. In batch culture, pH change occurs in proportion to the consumption of propionic acid. Optimal concentration of propionic acid was maintained during the production phase by using a pH-stat feeding method and a total polymer content higher than 70% and the relative HV content upto 50% could be achieved.  相似文献   

13.
在摇瓶条件下,对真养产碱杆菌(Alcaligeneseutrophus)的3羟基丁酸与3羟基戊酸共聚物(PHBV)发酵过程中HV组分的前体物质———丙酸的加入时间和加入量进行了研究,结果表明,PHBV中HV组分含量与丙酸的加入时间和加入量有密切的关系,丙酸的最佳加入时间为菌体生长阶段结束后的多聚物合成初期;尽管高浓度丙酸下可获得较高的HV组分含量,但会明显抑制菌体的生长和产物的合成。通过对2L小罐中PHBV合成阶段流加不同糖/酸比混合液所得的发酵结果的比较,并在综合考虑PHBV浓度、HV组分含量、生产强度和生产成本等基础上,提出了在PHBV合成期流加液的糖/酸比应随菌体对丙酸利用能力的下降而不断增加的流加策略,在此条件下,细胞干重、PHBV浓度和PHBV含量和HV摩尔分率分别达到521g/L、408g/L、783%和162mol%,HV组分对丙酸的产率系数为05g/g,PHBV的生产强度达到074g/(L/h)。  相似文献   

14.
 A screening programme was developed leading to the isolation of 75 strains of soil gram-negative bacteria which are able to produce polyhydroxyalkanoic acids (PHA) from sugar-cane derivatives. The evaluation of these strains was performed with regard to their efficiency in converting carbohydrates or propionic acid into PHA constituents. Several strains were able to use sucrose as well as glucose and fructose to grow and afterwards to accumulate poly-(3-hydroxybutyric acid) (PHB) with promising yields. Seven strains were found to have more than 80% of the theoretical value when converting carbohydrates into PHB and accumulated at least 50% of the cell dry weight as PHB. Ten strains incorporated 3-hydroxyvaleric acid units into the polymer from propionic acid of which 3 gave yields comparable to those of Alcaligenes eutrophus. Received: 19 May 1995/Received revision: 2 January 1996/Accepted: 22 January 1996  相似文献   

15.
The regulatory mechanisms of the biosynthesis of in vivo poly-beta-hydroxybutyrate [PHB] and poly(3-hydroxybutyrate-3-hydroxyvalerate) [P(3HB-3HV)] of Alcaligenes eutrophus were investigated by using various transformants with enzyme activities that were modified through the transformation of cloned phbCAB genes. The biosynthesis rates of PHB and P(3HB-3HV) were controlled by beta-ketothiolase and acetoacetyl-CoA reductase, and especially by beta-ketothiolase condensing acetyl-CoA or propionyl-CoA. The contents of PHB and P(3HB-3HV) were controlled by PHB synthase, polymerizing 3-hydroxybutyrate to PHB or 3-hydroxybutyrate and 3-hydroxyvalerate to P(3HB-3HV). The molar fraction of 3-hydroxyvalerate in P(3HB-3HV) was also closely connected with PHB synthase. This may be due to the accelerated polymerization between 3-HB from glycolysis pathway and 3-HV converted from propionate supplied as precursor. Enforced beta-ketothiolase and acetoacetyl-CoA reductase to PHB synthase tended to enlarge the size of the PHB and P(3HB-3HV) granules, however, higher activity ratio of PHB synthase to beta-ketothiolase and acetoacetyl-CoA reductase than parent strain tended to induce the number of granules.  相似文献   

16.
Alcaligenes eutrophus NCIMB 11599 was cultivated to produce poly(3-hydroxybutyric acid) (PHB) from glucose by the automatic fed-batch culture technique. The glucose concentration of the culture broth was controlled at 10 to 20 g/L by two methods: using exit gas data obtained from a mass spectrometer and using an on-line glucose analyzer. The effect of ammonium limitation on PHB synthesis at different culture phases was studied. The final cell concentration, PHB concentration, and PHB productivity increased as ammonia feeding was stopped at a higher cell concentration. High concentrations of PHB (121 g/L) and total cells (164 g/L) were obtained in 50 h when ammonia feeding was stopped at the cell concentration of 70 g/L. The maximum PHB content reached 76% of dry cell weight and the productivity was 2.42 g/L h with the yield of 0.3 g PHB/g glucose.  相似文献   

17.
Abstract n -Amyl alcohol was examined as a source for the synthesis of the 3-hydroxyvalerate (3HV) unit of the biopolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), by Alcaligenes sp., Pseudomonas sp. and several methylotrophic bacteria. A. eutrophus and Ps. lemoignei synthesized P(3HB-co-3HV) from glucose and n -amyl alcohol under nitrogen-deficient conditions. Many of methylotrophic bacteria grown on methanol synthesized the copolyester from methanol and n -amyl alcohol under nitrogen-deficient conditions. The content and composition of the polyester varied from strain to strain. Paracoccus denitrificans differed from all others in having a higher content of 3-hydroxyvalerate units in the copolyester synthesized.  相似文献   

18.
The potential of Pseudomonas pseudoflava to produce poly-β-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-β-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h−1 on glucose, 0.13 h−1 on xylose, and 0.10 h−1 on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g−1 h−1 on arabinose to 0.11 g g−1 h−1 on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of β-hydroxybutyric and β-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter−1. The β-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter−1.  相似文献   

19.
Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Alcaligenes eutrophus at 30 degrees C in nitrogen-free culture solutions containing gamma-butyrolactone alone or with fructose or butyric acid as the carbon sources. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 9 to 21 mol% as the concentration of gamma-butyrolactone in the culture solution increased from 10 to 25 g/l. The addition of fructose to the culture solution of gamma-butyrolactone resulted in a decrease in the 4HB fraction in copolyester. The copolyesters produced from gamma-butyrolactone and fructose by A. eutrophus were shown to have random sequence distribution of 3HB and 4HB units by analysis of the 125 MHz 13C n.m.r. spectra. In contrast, a mixture of random copolyesters with two different 4HB fractions was produced by A. eutrophus when gamma-butyrolactone and butyric acid were used as the carbon sources. These results are discussed on the basis of a proposed biosynthetic pathway of P(3HB-co-4HB). The copolyester films became soft with an increase in the 4HB fraction, and the elongation to break at 23 degrees C increased from 5 to 444% as the 4HB fraction increased from 0 to 16 mol%. The P(3HB-co-10% 4HB) film was shown to be biodegradable in an activated sludge.  相似文献   

20.
The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号