共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamura M Sebastian S Yang S Gurates B Ferrer K Sasano H Okamura K Bulun SE 《The Journal of biological chemistry》2002,277(29):26208-26216
2.
3.
4.
Franek WR Chowdary YC Lin X Hu M Miller EJ Kazzaz JA Razzano P Romashko J Davis JM Narula P Horowitz S Scott W Mantell LL 《The Journal of biological chemistry》2002,277(45):42694-42700
Inhaled nitric oxide (iNO) is used clinically to treat pulmonary hypertension in newborns, often in conjunction with hyperoxia (NO/O2). Prolonged exposure to NO/O2 causes synergistic lung injury and death of lung epithelial cells. To explore the mechanisms involved, oxygen-resistant HeLa-80 cells were exposed to NO +/- O2. Exposure to NO and O2 induced a synergistic cytotoxicity, accompanied with apoptotic characteristics, including elevated caspase-3-like activity, Annexin V incorporation, and nuclear condensation. This apoptosis was associated with a synergistic suppression of NF-kappaB activity. Cells lacking functional NF-kappaB p65 subunit were more sensitive to NO/O2 than their wild type counterparts. This injury was partially rescued by transfection with a p65 expression construct, suggesting an inverse relationship between NF-kappaB and susceptibility to the cytotoxicity of NO/O2. Despite the reduced NF-kappaB activity in cells exposed to NO +/- O2, IkappaBalpha was degraded, suggesting that pathways regulating the steady-state levels of IkappaB were not involved. However, exposure to NO/O2 caused a marked reduction in nuclear localization and an increase in protein carbonyl formation of NF-kappaB p65 subunit. These results suggest that NO/O2-induced apoptosis occurs by suppressing NF-kappaB activity. 相似文献
5.
6.
Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2 总被引:9,自引:0,他引:9
Van Huffel S Delaei F Heyninck K De Valck D Beyaert R 《The Journal of biological chemistry》2001,276(32):30216-30223
The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20. 相似文献
7.
8.
9.
The staphylococcal enterotoxins produced by Staphylococcus aureus are associated with pyrogenic response in humans and primates. This study investigates the role of NADPH oxidase and nuclear factor-kappa B (NF-kappaB) on enterotoxin staphylococcal enterotoxin C1 (SEC1)-induced pyrogenic cytokine production in human peripheral blood mononuclear cells (PBMC). The results indicate that the febrile response to the supernatant fluids of SEC1-stimulated PBMC in rabbits was in parallel with the levels of interleukin-1beta and interleukin-6 in the supernatants. The release of interleukin-1beta and interleukin-6, nuclear translocation of NF-kappaB and its DNA binding activity in the SEC1-stimulated PBMC were time-dependent and were completely eliminated by pyrrolidine dithiocarbamate or SN-50 (NF-kappaB inhibitors). The release of reactive oxygen species in the supernatants and translocation of the NADPH oxidase p47(phox) subunit to the plasma membrane of SEC1-stimulated PBMC were time-dependent. Administration of apocynin (NADPH oxidase inhibitor) attenuated the febrile response to the supernatants in rabbits and decreased the translocation of NADPH oxidase p47(phox) subunit and NF-kappaB activity in the SEC1-stimulated PBMC, and suppressed reactive oxygen species and pyrogenic cytokine production in the supernatants. Taken together, SEC1 may act through an NADPH oxidase mechanism to release reactive oxygen species, which activate NF-kappaB in PBMC to stimulate the synthesis of pyrogenic cytokines that trigger a fever response in rabbits. 相似文献
10.
11.
Huang CS Kawamura T Peng X Tochigi N Shigemura N Billiar TR Nakao A Toyoda Y 《Biochemical and biophysical research communications》2011,(2):253-258
Entry of enveloped viruses into cells is initiated by binding of their envelope glycoproteins (Envs) to cell surface-associated receptors. The Crimean-Congo hemorrhagic fever virus (CCHFV) has two Envs, Gn and Gc, with poorly understood role in binding to susceptible cells. We expressed codon optimized Gn and Gc, and identified independently folded soluble Env fragments, one of which (Gc residues 180–300) bound CCHFV susceptible cells supposedly by interacting with a putative receptor. This receptor binding domain (RBD) was used to identify its interacting partner by coimmunoprecipitation and mass spectrometry. Thus we identified the human cell surface nucleolin as a putative CCHFV entry factor. Nucleolin was expressed on all susceptible cells tested but not on the surface of cells resistant to CCHFV infection. Further studies are needed to explore the nucleolin function as a plausible CCHFV receptor and the molecular mechanisms of the Gc-nucleolin interactions. The identification of the CCHFV RBD and its binding partner could provide novel targets for therapy and tools for prevention as well as more complete understanding of the mechanisms of CCHFV entry and pathogenesis. 相似文献
12.
Chien-Sheng Huang Tomohiro Kawamura Ximei Peng Naobumi Tochigi Norihisa Shigemura Timothy R. Billiar Atsunori Nakao Yoshiya Toyoda 《Biochemical and biophysical research communications》2011,(2):253
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI. 相似文献
13.
T Iwamoto S Fukumoto K Kanaoka E Sakai M Shibata E Fukumoto J Inokuchi Ji K Takamiya K Furukawa K Furukawa Y Kato A Mizuno 《The Journal of biological chemistry》2001,276(49):46031-46038
Glycosphingolipids and their metabolites play important roles in a variety of biological processes. Several signal molecules are localized in a glycolipid-enriched microdomain on the cell surface, and their signals are regulated by the glycolipid composition. However, the function of glycolipids in osteoclastogenesis has not been clearly understood. We found that D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glucosylceramide synthase inhibitor, completely inhibits the osteoclast formation induced by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand (RANKL) in a dose-dependent manner. Expression of RANK, the receptor of RANKL, induced by macrophage colony-stimulating factor, was reduced markedly in D-PDMP-treated cells. d-PDMP also inhibited the phosphorylation of the inhibitor of nuclear factor-kappa B and extracellular signal-regulated kinase 1/2 induced by RANKL. In several experiments with the addition of glycolipids to D-PDMP-treated purified bone marrow cells, lactosylceramide (LacCer) strongly affected the differentiation into tartrate-resistant acid phosphatase mononucleated cells, but not positive multinucleated cells. GM3 and GM1 also recovered, but less effectively compared with LacCer. Moreover, exogenous LacCer recovered the reduced expression of RANK and the phosphorylation of inhibitor of NF-kappa B and extracellular signal-regulated kinase 1/2 after stimulation by RANKL at the same level of cells without D-PDMP treatment. Our data suggest that glycosphingolipids, especially LacCer, are necessary for the initiation step of RANKL-induced osteoclastogenesis. 相似文献
14.
Ray S Misso NL Lenzo JC Robinson C Thompson PJ 《Free radical biology & medicine》1999,27(11-12):1346-1356
Despite the central role of gamma-glutamylcysteine synthetase (gammaGCS) in lung antioxidant defenses, the limited studies of the activity of this enzyme in respiratory cells have produced variable results. This study has examined the factors, which may influence the measurement of gammaGCS activity in cultured human lung epithelial cells (A549). Although a source of potential error, gammaGCS activity in A549 cell extracts did not vary significantly when appropriately assayed by three different methods or after removal of the endogenous inhibitor, glutathione (GSH). However, gammaGCS activity did increase significantly during the early stages of cell proliferation (3.50 +/- 0.31 vs. 2.35 +/- 0.16 nmol/min/10(6) cells for baseline, p < .001) and thereafter returned to baseline levels during the later stages of cell growth. Variations in initial plating density also significantly altered gammaGCS activity (3.11 +/- 0.14 vs. 4.04 +/- 0.50 nmol/min/10(6) cells, at 0.25 x 10(5) and 0.58 x 10(5) cells/cm2, respectively, p < .001) and GSH content (45.43 +/- 4.43 vs. 63.64 +/- 3.28 nmol/10(6) cells at 0.25 x 10(5) and 0.58 x 10(5) cells/cm2, respectively, p < .001) during the early stages of cell proliferation. In addition, gammaGCS activity and GSH content were highest in A549 cells grown in medium containing cystine as the predominant sulfur-containing amino acid. These results suggest that gammaGCS activity of A549 cells is strongly dependent on initial plating density, stage of cell growth and sulfur amino acid content of the medium and may account for some of the variation in values reported by different investigators. Whether gammaGCS has an important role in the early phase of cell proliferation needs further investigation. 相似文献
15.
16.
17.
Horton ND Biswal SS Corrigan LL Bratta J Kehrer JP 《The Journal of biological chemistry》1999,274(14):9200-9206
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in various situations. In the present study, the effects of sublethal doses of acrolein on nuclear factor kappaB (NF-kappaB) activation in A549 human lung adenocarcinoma cells were investigated. Immediately following a 30-min exposure to 45 fmol of acrolein/cell, glutathione (GSH) and DNA synthesis and NF-kappaB binding were reduced by more than 80%. All parameters returned to normal or supranormal levels by 8 h post-treatment. Pretreatment with acrolein completely blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of NF-kappaB. Cells treated for 1 h with 1 mM diethyl maleate (DEM) showed a 34 and 53% decrease in GSH and DNA synthesis, respectively. DEM also reduced NF-kappaB activation by 64% at 2 h post-treatment, with recovery to within 22% of control at 8 h. Both acrolein and DEM decreased NF-kappaB function approximately 50% at 2 h after treatment with TPA, as shown by a secreted alkaline phosphatase reporter assay. GSH returned to control levels by 8 h after DEM treatment, but proliferation remained significantly depressed for 24 h. Interestingly, DEM caused a profound decrease in NF-kappaB binding, even at doses as low as 0.125 mM that had little effect on GSH. Neither acrolein nor DEM had any effect on the levels of phosphorylated or nonphosphorylated inhibitor kappaB-alpha (IkappaB-alpha). Furthermore, acrolein decreased NF-kappaB activation in cells depleted of IkappaB-alpha by TPA stimulation in the presence of cycloheximide, demonstrating that the decrease in NF-kappaB activation was not the result of increased binding by the inhibitory protein. This conclusion was further supported by the finding that acrolein modified NF-kappaB in the cytosol prior to chemical dissociation from IkappaB with detergent. Together, these data support the conclusion that the inhibition of NF-kappaB activation by acrolein and DEM is IkappaB-independent. The mechanism appears to be related to direct modification of thiol groups in the NF-kappaB subunits. 相似文献
18.
Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells 总被引:1,自引:0,他引:1
Wille A Gerber A Heimburg A Reisenauer A Peters C Saftig P Reinheckel T Welte T Bühling F 《Biological chemistry》2004,385(7):665-670
Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis. 相似文献
19.
20.
Chen LY Woszczek G Nagineni S Logun C Shelhamer JH 《American journal of physiology. Lung cellular and molecular physiology》2008,295(2):L326-L335
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) activation is a regulatory step in the control of arachidonic acid (AA) liberation for eicosanoid formation. Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator involved in the regulation of many important proinflammatory processes and has been found in the airways of asthmatic subjects. We investigated the mechanism of S1P-induced AA release and determined the involvement of cPLA(2)alpha in these events in A549 human lung epithelial cells. S1P induced AA release rapidly within 5 min in a dose- and time-dependent manner. S1P-induced AA release was inhibited by the cPLA(2)alpha inhibitors methyl arachidonyl fluorophosphonate (MAFP) and pyrrolidine derivative, by small interfering RNA-mediated downregulation of cPLA(2)alpha, and by inhibition of S1P-induced calcium flux, suggesting a significant role of cPLA(2)alpha in S1P-mediated AA release. Knockdown of the S1P3 receptor, the major S1P receptor expressed on A549 cells, inhibited S1P-induced calcium flux and AA release. The S1P-induced calcium flux and AA release was associated with sphingosine kinase 1 (Sphk1) expression and activity. Furthermore, Rho-associated kinase, downstream of S1P3, was crucial for S1P-induced cPLA(2)alpha activation. Our data suggest that S1P acting through S1P3, calcium flux, and Rho kinase activates cPLA(2)alpha and releases AA in lung epithelial cells. An understanding of S1P-induced cPLA(2)alpha activation mechanisms in epithelial cells may provide potential targets to control inflammatory processes in the lung. 相似文献