首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A possible role of poly(ADP-ribose) synthesis in modulating the response of V79 cells to DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) was investigated. Inhibition of [3H]thymidine (dThd) incorporation into DNA and lowering of NAD+ levels in intact cells were employed as parameters of DNA-synthesis inhibition and poly(ADP-ribose) synthesis, respectively. Dose responses of these parameters were studied in cells 2 and 24 h after treatment with the methylating agents in medium with or without dThd. The initial inhibition of DNA synthesis was uniformly associated with stimulation of poly(ADP-ribose) synthesis whether the cells were treated with MNNG or MMS, incubated with or without 20 microM dThd which did not inhibit poly(ADP-ribose) synthesis, or incubated with 3 mM dThd which did inhibit the latter synthesis. By contrast, the DNA-synthesis inhibition detected 24 h after treatment with MNNG was not associated with poly(ADP-ribose) synthesis. These data suggest that (i) the mechanism of this later inhibition of DNA synthesis is different from that of the initial inhibition, (ii) DNA-synthesis inhibition does not stimulate poly(ADP-ribose) synthesis, and (iii) single-strand breaks, resulting from N-methylation of the DNA, stimulate poly(ADP-ribose) synthesis, which may produce the initial inhibition of DNA synthesis. The initial inhibition of DNA synthesis was not uniformly associated with mutagenesis and dThd facilitation of MNNG-induced cytotoxicity and mutagenesis. This indicates that O-methylation of DNA does not stimulate poly(ADP-ribose) synthesis. Our data suggest that, in V79 cells treated with methylating agents, poly(ADP-ribose) synthesis is stimulated by single-strand breaks, inhibits DNA synthesis, and thereby serves to allow time for repair of the DNA prior to replication.  相似文献   

2.
The concerted action of poly(ADP-ribose) polymerase (PARP) which synthesizes the poly(ADP-ribose) (pADPr) in response to DNA strand breaks and the catabolic enzyme poly(ADP-ribose) glycohydrolase (PARG) determine the level of polymer and the rate of its turnover. In the present study, we have shown that the quail myoblast cells have high levels of basal polymer as compared to the murine C3H10T1/2 fibroblasts. We have conducted this study to investigate how such differences influence polymer synthesis and its catabolism in the cells in response to DNA damage by alkylating agent. In quail myoblast cells, the presence of high MNNG concentration such as 200 \sgmaelig;M for 30 min induced a marginal decrease of 15% in the NAD content. For C3H10T1/2 cell line, 64 \sgmaelig;M MNNG provoked a depletion of NAD content by approximately 50%. The induction of the polymer synthesis in response to MNNG treatment was 6-fold higher in C3H10T1/2 cells than in quail myoblast cells notwithstanding the fact that 3-fold higher MNNG concentration was used for quail cells. The polymer synthesis thus induced in quail myoblast cells had a 4-5 fold longer half life than those induced in C3H10T1/2 cells. To account for the slow turnover of the polymer in the quail myoblast cells, we compared the activities of the polymer catabolizing enzyme (PARG) in the two cell types. The quail myoblast cells had about 25% less activity of PARG than the murine cells. This difference in activity is not sufficient to explain the large difference of the rate of catabolism between the two cell types implicating other cellular mechanisms in the regulation of pADPr turnover.  相似文献   

3.
We have studied the role of poly(ADP-ribose) polymerase in the repair of DNA damage induced by x-ray and N-methyl N-nitro-N-nitrosoguanidine (MNNG) by using V79 chinese hamster cells, and two derivative mutant cell lines, ADPRT54 and ADPRT351, that are deficient in poly(ADP-ribose) polymerase activity. Under exponentially growing conditions these mutant cell lines are hypersensitive to x-irradiation and MNNG compared to their parental V79 cells which could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in the repair of DNA damage. However, the level of DNA strand breaks induced by x-irradiation and MNNG and their rates of repair are similar in all the cell lines, thus suggesting that it may not be the difference in strand break formation or in its rate of repair that is contributing to the enhanced cell killing in exponentially growing poly(ADP-ribose) polymerase deficient cell lines. In contrast, under growth-arrested conditions, all three cell lines become similarly sensitive to both x-irradiation and MNNG, thus suggesting that poly(ADP-ribose) polymerase may not be involved in the repair of DNA damage in growth-arrested cells. These paradoxical results could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in DNA repair in a cell-cycle-dependent fashion, however, it is functionally active throughout the cell cycle. To resolve this dilemma and explain these results and those obtained by many others, we propose that the normal function of poly(ADP-ribose) polymerase is to prevent DNA recombination processes and facilitate DNA ligation.  相似文献   

4.
本文观察了FL细胞中ADP-核糖基转移酶(ADPRT)底物NAD含量的细胞周期性变化及其与DNA复制之间的关系。FL细胞NAD含最在G_1期最高,而在S期DNA合成高峰后0—3小时(S/G_2期)达到最低点。ADPRT抑制剂3 AB能够抑制NAD含量的细胞周期性变化,而且S期DNA合成亦受到抑制,并呈现S期延长,提示ADP-核糖基化作用可能参与DNA复制过程。本文还观察了三种DNA损伤剂MNNG、MMS及4NQO对处于细胞周期不同时相的FL细胞NAD含量的影响,以及ADPRT抑制剂3 AB及尼克酰胺对此影响的作用。证明ADPRT抑制剂可以特异地抑制DNA损伤性NAD含量下降而对正常FL细胞NAD含量及代谢抑制剂2,4-DNP所致的NAD含量下降没有影响。从而有可能建立一个以测量细胞内NAD含量为指标的简便、快速、特异的检测DNA损伤因子的方法。  相似文献   

5.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

6.
Alkylating agents cause a marked depletion of cellular NAD+ levels by activating nuclear ADP-ribosyl transferase (ADPRT), which utilizes NAD+ as a substrate in the synthesis of poly(ADP-ribose). As a consequence of NAD+ depletion, it is possible that cellular ATP pools could be depleted. Because of this, exogenously supplied NAD+ had been proposed as a way to counteract some of the effects of an alkylator. We found that exogenously supplied NAD+ significantly increased intracellular levels of NAD+ in MMS- and MNNG-treated V79 Chinese hamster cells. Cytotoxicity was not changed by the exogenously supplied NAD+, however. 3-Aminobenzamide (3-ABA), an ADPRT inhibitor, prevented the depletion of intracellular NAD+ by MMS or MNNG treatment and potentiated cytotoxicity. As was the case without 3-ABA, exogenously supplied NAD+ plus 3-ABA did not change the cytotoxicity, even though NAD+ levels were increased. Intracellular ATP levels were also measured and were found to be unaffected following MMS treatment, and only slightly depleted following MNNG treatment. Exogenously supplied NAD+ raised these levels above those for their respective controls. Because survival was unaffected by elevated levels of NAD+ and ATP, our results suggest that depletion of cellular NAD+ pools following MMS and MNNG treatment is not a critical factor in determining cytotoxicity for these V79 cells. The energy reserves of V79 cells, at doses of MMS or MNNG which kill 99% of the cells, are apparently adequate to maintain normal levels of ATP.  相似文献   

7.
DNA repair synthesis and cytotoxicity were evaluated in early passage mouse embryo fibroblasts from five inbred strains (B10, CBA, C3H/A, DBA/2, BALB/c) and in BALB/3T3 IL-2 cells after the cultures had been treated for 3 h with methyl methanesulphonate (MMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In the presence of hydroxyurea, the incorporation of tritiated thymidine into the MMS- or MNNG-treated cells derived from B10, CBA, C3H/A or DBA/2 mice, was, at the concentrations used, significantly higher than into controls untreated with the mutagens. Under analogous experimental conditions there was no detectable DNA repair synthesis in two kinds of cells derived from BALB/c mice. MNNG was more cytotoxic to the cells derived from BALB/c mice than to those of the four remaining strains. The sensitivity of all kinds of early passage mouse fibroblasts to MMS was similar at each MMS concentration tested. Cloning efficiency of BALB/3T3 IL-2 cells exposed to MMS at the concentration of 10(-3) or 10(-4) M did not differ from that of untreated controls. The latter cells treated with MNNG at the concentration of 10(-4) or 2 X 10(-4) M did not develop colonies.  相似文献   

8.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

9.
Nicotinamide-adenine dinucleotide (NAD+) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD+ levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase ( ADPRT ) also increased linearly with radiation dose. The decrease of NAD+ was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79- AL162 /S-10. An inhibitor of ADPRT , m-aminobenzamide, largely prevented the depletion of cellular NAD+ and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D2O--which inhibit repair of radiation-induced potentially lethal damage--enhanced the depletion of NAD+ and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD+ metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage.  相似文献   

10.
NAD is the substrate of a novel chromatin-associated enzyme-ADP-ribosyl transferase (ADPRT). In this study, the cell-cycle dependent change in cellular NAD content was observed in a line of human amnion FL cells. It was found that the cellular NAD content of FL cells was highest in G1 and lowest in S/G2-G2. 3AB, a potent ADPRT inhibitor, can inhibit the cell cycle dependent change in cellular NAD content and also inhibit DNA synthesis in the S phase and extend the S phase. The results indicate that ADP-ribosylation may be involved in DNA replication and cell cycle progression. It was also found that the DNA-damaging agents, MNNG, MMS and 4NQO could lower cellular NAD content in a dose-dependent way. This DNA-damage-induced NAD lowering could be partially or completely prevented by the ADPRT inhibitors, 3AB or nicotinamide, which were shown to exert no influence on either the cellular NAD content of normal quiescent FL cells or the metabolic blocking agent, 2,4-DNP-induced cellular NAD lowering. The possibility of establishing a simple and specific method to detect DNA-damaging agents by measuring cellular NAD content in the presence or absence of ADPRT inhibitor is explored.  相似文献   

11.
Exposure of Chinese hamster cells to near-u.v. light, following the uniform incorporation of 5-bromodeoxyuridine (BrdUrd) into their DNA, resulted in cell killing that was close to exponential. An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3-ABA), enhanced the cytotoxic effect of this treatment when present for 2 h at 20 mM after light exposure. The dose modifying factor was 1.4. Under conditions that resulted in a sigmoidal survival curve (a 30 min BrdUrd pulse in S phase, followed 90 min later by light exposure) the effect of 3-ABA was to remove the shoulder of the survival curve with very little change in its final slope. Using various inhibitors of ADP-ribosyl transferase (ADPRT) the enhanced cell killing was found to correlate with the inhibitors' relative potency. Cellular NAD+, the substrate for poly(ADP-ribose) synthesis, was rapidly depleted after exposure. This depletion was largely prevented by 3-ABA; the activity of ADPRT increased with the fluence of near-u.v. light; and the concentration of cellular NAD+ decreased with exposure. ADPRT activity was maximal immediately after exposure to near u.v. light and then decayed to pre-exposure levels within 30 min (37 degrees C). The enhanced cytotoxicity of BrdUrd + near-u.v. light, when followed by 3-ABA treatment, disappeared at a rate similar to that of the decay in ADPRT activity. We conclude from these results that poly(ADP-ribose) synthesis is important for the recovery from BrdUrd photolysis damage in DNA. Because this damage and its repair are relatively specific (e.g. compared to ionizing radiation) and relatively easy to manipulate, it could serve as a model system for the study of the role of poly(ADP-ribose) in the repair of DNA damage.  相似文献   

12.
About 50% of the strains of cultured fibroblasts from patients with familial polyposis coli (FPC) exhibited increased susceptibility to cytotoxicity of 4-nitroquinoline-1-oxide (4NQO) compared with cells from normal individuals. The FPC cells that showed hyper-sensitivity to 4NQO were also hyper-sensitive to mitomycin C (MMC), but susceptibilities of these cells to UV radiation, methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were within the normal range. The extent of single-strand scission of DNA in the 4NQO-sensitive FPC cells was greater than in normal cells, and the amount of [14C]4NQO bound to DNA in the FPC cells was twice as high as in normal cells. The rate of release of [14C]4NQO from DNA by the post-culture was the same as in both FPC and normal cells. The 4NQO-sensitive FPC cells exhibited increased 4NQO-reductase activity; the level of this activity was consistent with the extent of the decrease in colony formation by 4NQO. These results suggest that the enhanced ability to activate 4NQO might be an important factor in the mechanism of susceptibility of FPC cells to 4NQO rather than the reduced ability to repair DNA.  相似文献   

13.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   

14.
The O6-methylguanine-DNA-methyltransferase (transferase) activity in a rat hepatoma cell line (H4 cells) is enhanced as a response to DNA damaging agents. To study whether poly (ADP-ribosylation) is involved in this induction, the cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) that induces the transferase activity and stimulates poly (ADP-ribose) synthesis. Addition of poly (ADP-ribose) polymerase inhibitors enhanced the transferase increase induced by MNNG. The influence of the inhibitors on the transferase induction was dose and time-dependent. The results suggest that poly (ADP-ribose) is involved in the induction of this protein.  相似文献   

15.
The effect of nicotinamide on unscheduled DNA synthesis was studied in resting human lymphocytes. In cells treated with UV irradiation or with MNNG, nicotinamide caused a two-fold stimulation of unscheduled DNA synthesis and retarded the rate of NAD+ lowering caused by these treatments. Nicotinamide also reduced the burst of poly(ADP-ribose) synthesis caused by MNNG treat-ment. Thus under conditions that it enhances unscheduled DNA synthesis, nicotinamide causes marked effects on the metabolism of NAD+ and poly(ADP-ribose). The effect of nicotinamide on unscheduled DNA synthesis was shown to be independent of protein or polyamine synthesis.  相似文献   

16.
We have studied the clonogenic survival response to X-rays and MNNG of V79 Chinese hamster cells and two derivative cell lines, ADPRT54 and ADPRT351, deficient in poly(ADP-ribose) polymerase (PARP) activity. Under conditions of exponential growth, both PARP-deficient cell lines are hypersensitive to X-rays and MNNG compared to their parental V79 cells. In contrast, under growth-arrested, confluent conditions, V79 and PARP-deficient cells become similarly sensitive to X-rays and MNNG suggesting that PARP may be involved in the repair of X-ray or MNNG-induced DNA damage in logarithmically growing cells but not in growth-arrested confluent cells. This suggestion, however, creates a dilemma as to how PARP can be involved in DNA repair in only selected growth phases while it is functionally active in all growth phases. To explain these paradoxical results and resolve this dilemma we propose a hypothesis based on the consistent observation that inhibition of PARP results in a significant increase in sister chromatid exchange (SCEs). Thus, we propose that PARP is a guardian of the genome that protects against DNA recombination. We have extended this theme to provide an explanation for our results and the studies done by many others.  相似文献   

17.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

18.
The evidence implicating poly (ADP-ribose) in the radiation response of mammalian cells is reviewed. It is concluded that the apparently conflicting results using inhibitors of ADP-ribosyl transferase (ADPRT) can be explained by a working hypothesis. This hypothesis maintains that poly (ADP-ribose) is required for repair of radiation damage (presumably to facilitate ligation). In most cells the synthesis of poly (ADP-ribose) is not rate limiting for repair and therefore, an almost complete inhibition of ADPRT activity is required to potentiate the radiation response. In radiation-sensitive cells (e.g. resting lymphocytes, L5178Y-S cells) with a deficient poly (ADP-ribose) metabolism, its synthesis can become rate limiting for repair. In such cells even a partial inhibition of ADPRT activity may enhance radiation-induced cell killing. It is suggested that if such differences exist between normal and cancer cells, they can be utilized to improve the therapeutic ratio of radiotherapy.  相似文献   

19.
N Suzuki 《Mutation research》1987,178(1):135-141
From a human cell line, RSb, with high sensitivity to the killing effects of 4-nitroquinoline 1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 254-nm ultraviolet light, a 4NQO-resistant variant, Qr-10, and an MNNG-resistant one, Gr-10, were established using ethyl methanesulfonate as the mutagen. Cell proliferation studies and colony-formation assays revealed that Qr-10 and Gr-10 cells actively proliferated under conditions where RSb cell proliferation was greatly inhibited by 4NQO and MNNG, respectively. Total cellular DNA synthesis, as estimated by [Me-3H]thymidine uptake into acid-insoluble cell materials, was depressed in 4NQO-treated Qr-10 and MNNG-treated Gr-10 cells as it was in chemical-treated RSb cells, but recovered more markedly from such inhibition in the variants. 4NQO- and MNNG-induced DNA-repair replication synthesis was enhanced to a greater extent in Qr-10 and Gr-10 cells, respectively, than in RSb cells. The Qr-10 and Gr-10 cells showed the same respective susceptibility to the effects of MNNG and 4NQO, on cell growth and DNA synthesis and DNA-repair synthesis as did the parent cells. But, Qr-10 cells had more resistance to UV-killing and higher levels of UV-induced DNA-repair synthesis than did RSb cells, while UV-susceptibility of Gr-10 cells was the same as that of the latter.  相似文献   

20.
PARP-1 (poly(ADP-ribose) polymerases) modifies proteins with poly(ADP-ribose), which is an important signal for genomic stability. ADP-ribose polymers also mediate cell death and are degraded by poly(ADP-ribose) glycohydrolase (PARG). Here we show that the catalytic domain of PARG interacts with the automodification domain of PARP-1. Furthermore, PARG can directly down-regulate PARP-1 activity. PARG also interacts with XRCC1, a DNA repair factor that is recruited by DNA damage-activated PARP-1. We investigated the role of XRCC1 in cell death after treatment with supralethal doses of the alkylating agent MNNG. Only in XRCC1-proficient cells MNNG induced a considerable accumulation of poly(ADP-ribose). Similarly, extracts of XRCC1-deficient cells produced large ADP-ribose polymers if supplemented with XRCC1. Consequently, MNNG triggered in XRCC1-proficient cells the translocation of the apoptosis inducing factor from mitochondria to the nucleus followed by caspase-independent cell death. In XRCC1-deficient cells, the same MNNG treatment caused non-apoptotic cell death without accumulation of poly(ADP-ribose). Thus, XRCC1 seems to be involved in regulating a poly(ADP-ribose)-mediated apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号