首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.  相似文献   

2.
Molecular dynamics simulations of Leu-enkephalin in water and DMSO.   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of Leu-enkephalin (L-Enk) and Met-enkephalin (M-Enk) have frequently been studied, in particular by nuclear magnetic resonance spectroscopy. After more than 20 years of research, it was concluded that enkephalins have no preferred structure in aqueous solution, but that they may have in other solvents. We have performed molecular dynamics simulations of zwitterionic L-Enk in water, and zwitterionic as well as neutral L-Enk dimethyl sulfoxide (DMSO). In water the peptide is very flexible, although there seems to be a preference for compact conformations. In DMSO, the peptide forms a clear salt bridge in the zwitterionic form, but has no preferred conformation in the neutral form. This difference in conformation may provide an explanation for measurements in DMSO in which multiple conformations were found to exist. In this paper we introduce a new formulation for a dihedral angle autocorrelation function, and apply it to study side-chain dynamics in L-Enk. We find that the side-chain dynamics of the large Tyr and Phe residues cannot be adequately sampled in 2.0-ns simulations, while this does seem to be possible for the smaller Leu side chain.  相似文献   

3.
Díaz N  Suárez D  Sordo TL 《Biochemistry》2006,45(2):439-451
Herein, we present results from molecular dynamics (MD) simulations of the class C beta-lactamase from Citrobacter freundii and its Michaelis complex with aztreonam. Four different configurations of the active site were modeled in aqueous solution, and their relative stability was estimated by means of quantum mechanical energy calculations. For the free enzyme, the energetically most stable configurations present a neutral Lys67 residue or an anionic Tyr150 side chain. Our calculations predict that these two configurations are quite close in terms of free energy, the anionic Tyr150 state being favored by approximately 1 kcal/mol. In contrast, for the noncovalent complex formed between the C. freundii enzyme and aztreonam, the energetic analyses predict that the configuration with the neutral Lys67 residue is much more stable than the anionic Tyr150 one (approximately 20 kcal/mol). Moreover, the MD simulations reveal that the neutral Lys67 state results in a proper enzyme-aztreonam orientation for nucleophilic attack and in a very stable contact between the nucleophilic hydroxyl group of Ser64 and the neutral amino side chain of Lys67. Thus, both the computed free energies and the structural analyses support the assignation of Lys67 as the base catalyst for the acylation step in the native form of the C. freundii enzyme.  相似文献   

4.
5.
The fluorescence and excitation spectra of luliberin (luteinizing hormone-releasing factor) in 0.005 M aqueous ammonium acetate are identical in shape to those of N-acetyltryptophan amide and are related to the indole side chain of Trp3. The change of fluoresecence intensity of luliberin with pH was measured in the range of pH 4-11. The increase of pH from 4 to 7.5 is followed by about 50% increase in fluorescence intensity due to deprotonation of the imidazolium side chain of His2. The fluorimetric titration curve in this pH region reveals a pK value for His2 of 5.95. Increasing of pH from 8 to 11 results in about 40% quenching of the fluorescence due to electronic energy transfer from the excited indole of Trp3 to the phenolate side chain of Tyr5. The pK value of Tyr5, obtained independently from the fluorimetric and photometric titrations indicate that at pH 7-8 luliberin contains only one charged residue, Arg8, which is in close vicinity to both His2 and Tyr5. The side chains of His2, Tyr5 and Arg8 presumably form a combined unit which may play an active role in the hormone action. Trp3 is at a maximal distance from this unit and may thus act as an independent active unit.  相似文献   

6.
The virally encoded 3C proteinases of picornaviruses process the polyprotein produced by the translation of polycistronic viral mRNA. The X-ray crystallographic structure of a catalytically active mutant of the hepatitis A virus (HAV) 3C proteinase (C24S) has been determined. Crystals of this mutant of HAV 3C are triclinic with unit cell dimensions a = 53.6 A, b = 53.5 A, c = 53.2 A, alpha = 99.1 degrees, beta = 129.0 degrees, and gamma = 103.3 degrees. There are two molecules of HAV 3C in the unit cell of this crystal form. The structure has been refined to an R factor of 0.211 (Rfree = 0.265) at 2.0-A resolution. Both molecules fold into the characteristic two-domain structure of the chymotrypsin-like serine proteinases. The active-site and substrate-binding regions are located in a surface groove between the two beta-barrel domains. The catalytic Cys 172 S(gamma) and His 44 N(epsilon2) are separated by 3.9 A; the oxyanion hole adopts the same conformation as that seen in the serine proteinases. The side chain of Asp 84, the residue expected to form the third member of the catalytic triad, is pointed away from the side chain of His 44 and is locked in an ion pair interaction with the epsilon-amino group of Lys 202. A water molecule is hydrogen bonded to His 44 N(delta1). The side-chain phenolic hydroxyl group of Tyr 143 is close to this water and to His 44 N(delta1) and may be negatively charged. The glutamine specificity for P1 residues of substrate cleavage sites is attributed to the presence of a highly conserved His 191 in the S1 pocket. A very unusual environment of two water molecules and a buried glutamate contribute to the imidazole tautomer believed to be important in the P1 specificity. HAV 3C proteinase has the conserved RNA recognition sequence KFRDI located in the interdomain connection loop on the side of the molecule diametrically opposite the proteolytic site. This segment of polypeptide is located between the N- and C-terminal helices, and its conformation results in the formation of a well-defined surface with a strongly charged electrostatic potential. Presumably, this surface of HAV 3C participates in the recognition of the 5' and 3' nontranslated regions of the RNA genome during viral replication.  相似文献   

7.
Zhou S  Liang D  Burger C  Yeh F  Chu B 《Biomacromolecules》2004,5(4):1256-1261
Synchrotron small-angle X-ray scattering was used to study the nanostructures of the complexes formed by calf thymus DNA interacting with cationic lipids (or surfactants) of didodecyldimethylammonium bromide (DDAB), cetyltrimethylammonium bromide (CTAB), and their mixture with a zwitterionic lipid of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (PHGPC). The effects of lipid/DNA ratios, DNA chain flexibility, lipid topology, and neutral lipid mixing on the nanostructures of DNA-lipid complexes were investigated. The complexes between double-stranded DNA (dsDNA) and double-tailed DDAB formed a bilayered lamellar structure, whereas the complexes between dsDNA and single-tailed CTAB preferred a structure of 2D hexagonal close packing of cylinders. With single stranded DNA (ssDNA) interacting with CTAB, the complexes showed a Pm3n cubic structure due to the different chain flexibility between dsDNA and ssDNA. The lipid molecules bound by rigid dsDNA like to form cylindrical micelles, whereas lipids bound to flexible ssDNA could form spherical or short cylindrical micelles. The addition of the neutral single-chained PHGPC lipids to the CTAB lipids could induce a structural transition of dsDNA-lipid complexes from a 2D hexagonal to a multi-bilayered lamellar structure. The parallel DNA strands were intercalated in the water layers of lamellar stacks of the mixed lipid bilayers. The DNA-DNA spacing depended on the ratios of charged lipid to neutral lipid, and charged lipid to DNA, respectively.  相似文献   

8.
It is difficult to increase protein stability by adding hydrogen bonds or burying nonpolar surface. The results described here show that reversing the charge on a side chain on the surface of a protein is a useful way of increasing stability. Ribonuclease T1 is an acidic protein with a pI approximately 3.5 and a net charge of approximately -6 at pH 7. The side chain of Asp49 is hyperexposed, not hydrogen bonded, and 8 A from the nearest charged group. The stability of Asp49Ala is 0.5 kcal/mol greater than wild-type at pH 7 and 0.4 kcal/mol less at pH 2.5. The stability of Asp49His is 1.1 kcal/mol greater than wild-type at pH 6, where the histidine 49 side chain (pKa = 7.2) is positively charged. Similar results were obtained with ribonuclease Sa where Asp25Lys is 0.9 kcal/mol and Glu74Lys is 1.1 kcal/mol more stable than the wild-type enzyme. These results suggest that protein stability can be increased by improving the coulombic interactions among charged groups on the protein surface. In addition, the stability of RNase T1 decreases as more hydrophobic aromatic residues are substituted for Ala49, indicating a reverse hydrophobic effect.  相似文献   

9.
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.  相似文献   

10.
Among the aromatic residues in protein structures, histidine (His) is unique, as it can exist in the neutral or positively charged form at the physiological pH. As such, it can interact with other aromatic residues as well as form hydrogen bonds with polar and charged (both negative and positive) residues. We have analyzed the geometry of interaction of His residues with nine other planar side chains containing aromatic (residues Phe, Tyr, Trp, and His), carboxylate (Asp and Glu), carboxamide (Asn and Gln) and guanidinium (Arg) groups in 432 polypeptide chains. With the exception of the aspartic (Asp) and glutamic (Glu) acid side-chains, all other residues prefer to interact in a face-to-face or offset-face-stacked orientation with the His ring. Such a geometry is different from the edge-to-face relative orientation normally associated with the aromatic-aromatic interaction. His-His pair prefers to interact in a face-to-face orientation; however, when both the residues bind the same metal ion, the interplanar angle is close to 90 degrees. The occurrence of different interactions (including the nonconventional N-H...pi and C-H...pi hydrogen bonds) have been correlated with the relative orientations between the interacting residues. Several structural motifs, mostly involved in binding metal ions, have been identified by considering the cases where His residues are in contact with four other planar moieties. About 10% of His residues used here are also found in sequence patterns in PROSITE database. There are examples of the amino end of the Lys side chain interacting with His residues in such a way that it is located on an arc around a ring nitrogen atom.  相似文献   

11.
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ionization and conformation. The response of protein to charges is incorporated both in the protein dielectric constant (epsilon(prot)) of four and by explicit conformational changes. The pK(a) of 166 residues in 12 proteins was determined. The root mean square error is 0.83 pH units, and >90% have errors of <1 pH units whereas only 3% have errors >2 pH units. Similar results are found with crystal and solution structures, showing that the method's explicit conformational sampling reduces sensitivity to the initial structure. The outcome also changes little with protein dielectric constant (epsilon(prot) 4-20). Multiconformation continuum electrostatics titrations show coupling of conformational flexibility and changes in ionization state. Examples are provided where ionizable side chain position (protein G), Asn orientation (lysozyme), His tautomer distribution (RNase A), and phosphate ion binding (RNase A and H) change with pH. Disallowing these motions changes the calculated pK(a).  相似文献   

12.
In this B3LYP study, the catalytic mechanisms for the hydrolysis of the three different peptide bonds (Lys28-Gly29, Phe19-Phe20, and His14-Gln15) of Alzheimer amyloid beta (Aβ) peptide by insulin-degrading enzyme (IDE) have been elucidated. For all these peptides, the nature of the substrate was found to influence the structure of the active enzyme–substrate complex. The catalytic mechanism is proposed to proceed through the following three steps: (1) activation of the metal-bound water molecule, (2) formation of the gem-diol intermediate, and (3) cleavage of the peptide bond. With the computed barrier of 14.3, 18.8, and 22.3 kcal/mol for the Lys28-Gly29, Phe19-Phe20, and His14-Gln15 substrates, respectively, the process of water activation was found to be the rate-determining step for all three substrates. The computed energetics show that IDE is the most efficient in hydrolyzing the Lys28-Gly29 (basic polar–neutral nonpolar) peptide bond followed by the Phe19-Phe20 (neutral nonpolar–neutral nonpolar) and His14-Gln15 (basic polar–neutral polar) bonds of the Aβ substrate.  相似文献   

13.
X-ray structures of proteins bound to ligand molecules containing a nucleic acid base were systematically searched for cation-pi interactions between the base and a positively charged or partially charged side chain group located above it, using geometric criteria. Such interactions were found in 38% of the complexes and are thus even more frequent than pi-pi stacking interactions. They are moreover well conserved in families of related proteins. The overwhelming majority of cation-pi contacts involve Ade bases, as these constitute by far the most frequent ligand building block; Arg-Ade is the most frequent cation-pi pair. Ab initio energy calculations at MP2 level were performed on all recorded pairs. Though cation-pi interactions involving the net positive charge carried by Arg or Lys side chains are the most favorable energetically, those involving the partial positive charge of Asn and Gln side chain amino groups (sometimes referred to as amino-pi interactions) are favorable too, owing to the electron correlation energy contribution. Chains of cation-pi interactions with a nucleobase bound simultaneously to two charged groups or a charged group sandwiched between two aromatic moieties are found in several complexes. The systematic association of these motifs with specific ligand molecules in unrelated protein sequences raises the question of their role in protein-ligand structure, stability, and recognition.  相似文献   

14.
Zwitterionic, net neutral oligonucleotides containing alternating negatively charged N3'-->P5' phosphoramidate monoester and positively charged phosphoramidate diester groups were synthesized. The ability of zwitterionic phosphoramidates to form complexes with complementary DNA and RNA was evaluated. Stoichiometry and salt dependency of these complexes were determined as a function of the nature of the heterocyclic bases of the zwitterionic compounds. Unlike the melting temperatures of the natural phosphodiester-containing oligomers, the T m of the duplexes formed with the zwitterionic oligothymidylates was salt concentration independent. The thermal stability of these duplexes was much higher with Delta T m values of 20-35 degrees C relatively to phosphodiester counterparts at low salt concentrations. The zwitterionic oligoadenylate formed only 2Py:1Pu triplexes with complementary poly(U) or poly(dT) strands. The thermal stability of these complexes was dependent on salt concentration. Also, the T m values of the complexes formed by the zwitterionic oligoadenylate with poly(U) were 6-41 degrees C higher than for the natural phosphodiester counterpart. Triplexes of this compound with poly(dT) were also more stable with a Delta T m value of 22 degrees C at low salt concentrations. Complexes formed by the zwitterionic oligonucleotides with complementary RNAs were not substrates for RNase H. Surprisingly, the duplex formed by the all anionic alternating N3'-->P5'phosphoramidate-phosphodiester oligothymidylate and poly(A) was a good substrate for RNase H.  相似文献   

15.
Gu W  Wang T  Zhu J  Shi Y  Liu H 《Biophysical chemistry》2003,104(1):79-94
Four 10-ns molecular dynamics (MD) simulations of the human prion protein domain (HuPrP 125-228) in explicit water solution have been performed. Each of the simulations mimicked a different environment of the protein: the neutral pH environment was simulated with all histidine residues neutral and bearing a ND proton and with other titratable side chains charged, the weakly acidic environment was simulated with all titratable side chains charged, the strongly acidic environment was simulated with all titratable side chains protonated. The protein in neutral pH environment was simulated at both ambient (298 K) and higher (350 K) temperatures. The native fold is stable in the neutral pH/ambient temperature simulation. Through out all other simulations, a quite stable core consisted of 10-20 residues around the disulfide bond retain their initial conformations. However, the secondary structures of the protein show changes of various degrees compared to the native fold, parts of the helices unfolded and the beta-sheets extended. Our simulations indicated that the heat-induced unfolding and acid-induced unfolding of HuPrP might follow different pathways: the initial stage of the acid-induced unfolding may include not only changes in secondary structures, but also changes in the tertiary structures. Under the strongly acidic condition, obvious tertiary structure changes take place after 10-ns simulation, the secondary structure elements and the loops becoming more parallel to each other, resulting in a compact state, which was stabilized by a large number of new, non-native side chain-side chain contacts. Such tertiary structure changes were not observed in the higher temperature simulation, and intuitively, they may favor the further extension of the beta-sheets and eventually the agglomeration of multiple protein molecules. The driving forces for this tertiary structure changes are discussed. Two additional 10-ns MD simulations, one with Asp202 protonated and the other with Glu196 protonated compared to the neutral pH simulation, were carried out. The results showed that the stability of the native fold is very subtle and can be strongly disturbed by eliminating a single negative charge at one of such key sites. Correlations of our results with previous experimental and theoretical studies are discussed.  相似文献   

16.
Conformational preferences of hypermodified nucleoside, 4-amino-2-(N(6)-lysino)-1-(beta-D-ribofuranosyl) pyrimidinium (Lysidine or 2-lysyl cytidine), usually designated as k(2)C, have been investigated theoretically by the quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. The zwitterionic, non-zwitterionic, neutral, and tautomeric forms have been studied. Automated geometry optimization using molecular mechanics force field (MMFF), semi-empirical quantum chemical PM3, and ab initio molecular orbital Hartree-Fock SCF quantum mechanical calculations have also been made to compare the salient features. The predicted most stable conformations of zwitterionic, non-zwitterionic, neutral, and tautomeric form are such that in each of these molecules the orientation of lysidine moiety (R) is trans to the N(1) of cytidine. The preferred base orientation is anti (chi = 3 degrees ) and the lysine substituent folds back toward the ribose ring. This results in hydrogen bonding between the carboxyl oxygen O(12a) of lysine moiety and the 2'-hydroxyl group of ribose sugar. In all these four forms of lysidine O(12a)...H-C(9) and O(12b)...H-N(11) interactions provide stability to respective stable conformers. Watson-Crick base pairing of lysidine with A is feasible only with the tautomeric form of usual anti oriented lysidine. This can help in recognition of AUA codon besides in avoiding misrecognition of AUG.  相似文献   

17.
Explicit solvent models in protein pKa calculations.   总被引:3,自引:1,他引:2       下载免费PDF全文
Continuum methods for calculation of protein electrostatics treat buried and ordered water molecules by one of two approximations; either the dielectric constant of regions containing ordered water molecules is equal to the bulk solvent dielectric constant, or it is equal to the protein dielectric constant though no fixed atoms are used to represent water molecules. A method for calculating the titration behavior of individual residues in proteins has been tested on models of hen egg white lysozyme containing various numbers of explicit water molecules. Water molecules were included based on hydrogen bonding, solvent accessibility, and/or proximity to titrating groups in the protein. Inclusion of water molecules significantly alters the calculated titration behavior of individual titrating sites, shifting calculated pKa values by up to 0.5 pH unit. Our results suggest that approximately one water molecule within hydrogen-bonding distance of each charged group should be included in protein electrostatics calculations.  相似文献   

18.
In bacteriorhodopsin Asp85 has been proposed to function both as a negative counterion to the Schiff base and as proton acceptor in the early stages of the photocycle. To test this proposal further, we have replaced Asp85 by His. The rationale for this replacement is that although His can function as a proton acceptor, it cannot provide a negative charge at residue 85 to serve as a counterion to the protonated Schiff base. We show here that the absorption spectrum of the D85H mutant is highly sensitive to the pH of the external medium. From spectroscopic titrations, we have determined the apparent pK for deprotonation of the Schiff base to be 8.8 +/- 0.1 and the apparent pK for protonation of the His85 side chain to be approximately 3.5. Between pH 3.5 and 8.8, where the Schiff base is protonated, and the His side chain is deprotonated, the D85H mutant is completely inactive in proton transport. Time-resolved studies show that there is no detectable formation of an M-like intermediate in the photocycle of the D85H mutant. These experiments show that the presence of a neutral proton-accepting moiety at residue 85 is not sufficient for carrying out light-driven proton transport. The requirements at residue 85 are therefore for a group that serves both as a negatively charged counterion and as a proton acceptor.  相似文献   

19.
The ability of peptides to form stable complexes with MHC class II molecules expressed in the host determines their ability to recruit CD4 T cells during an immune response. In this study, we sought to define the features of the antigenic peptides that control their kinetic stability with I-A(d) because of the diversity of peptides that this molecule is known to present. Peptide dissociation assays indicated that each pocket of I-A(d) displays exquisite sensitivity to side chain structure, size, and charge. Most surprising were results related to the P1 pocket, which has been difficult to define by conventional competition assays. Our studies revealed a considerable degree of specificity in the P1 pocket but also an unexpected degree of structural flexibility. Amino acids with neutral side chains such as Met and the alternatively negatively charged Glu are both highly favored at P1. Interestingly, these two options at the P1 pocket in I-A(d) display dramatically different pH-dependent interactions with the class II molecule. These findings are discussed in the context of a structural model to explain these data and in light of the immunological implications of pH-dependent behavior of class II-peptide complexes in acidic endosomal compartments, where DM-catalyzed loading of class II molecules takes place, and at the neutral pH of the APC cell surface, where class II-peptide complexes promote activation of CD4 T cells.  相似文献   

20.
The side chains of Lys66, Asp66, and Glu66 in staphylococcal nuclease are fully buried and surrounded mainly by hydrophobic matter, except for internal water molecules associated with carboxylic oxygen atoms. These ionizable side chains titrate with pKa values of 5.7, 8.8, and 8.9, respectively. To reproduce these pKa values with continuum electrostatics calculations, we treated the protein with high dielectric constants. We have examined the structural origins of these high apparent dielectric constants by using NMR spectroscopy to characterize the structural response to the ionization of these internal side chains. Substitution of Val66 with Lys66 and Asp66 led to increased conformational fluctuations of the microenvironments surrounding these groups, even under pH conditions where Lys66 and Asp66 are neutral. When Lys66, Asp66, and Glu66 are charged, the proteins remain almost fully folded, but resonances for a few backbone amides adjacent to the internal ionizable residues are broadened. This suggests that the ionization of the internal groups promotes a local increase in dynamics on the intermediate timescale, consistent with either partial unfolding or increased backbone fluctuations of helix 1 near residue 66, or, less likely, with increased fluctuations of the charged side chains at position 66. These experiments confirm that the high apparent dielectric constants reported by internal Lys66, Asp66, and Glu66 reflect localized changes in conformational fluctuations without incurring detectable global structural reorganization. To improve structure-based pKa calculations in proteins, we will need to learn how to treat this coupling between ionization of internal groups and local changes in conformational fluctuations explicitly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号